Metal nanoclusters have physical properties differing significantly from their bulk counterparts. Metallic properties such as delocalization of electrons in bulk metals which imbue them with high electrical and thermal conductivity, light reflectivity and mechanical ductility may be wholly or partially absent in metal nanoclusters, while new properties develop. We review modern synthetic methods used to form metal nanoclusters. The focus of this critical review is solution based chemical synthesis methods which produce fully dispersed clusters. Control of cluster size and surface chemistry using inverse micelles is emphasized. Two classes of metals are discussed, transition metals such as Au and Pt, and base metals such as Co, Fe and Ni. The optical and catalytic properties of the former are discussed and the magnetic properties of the latter are given as examples of unexpected new size-dependent properties of nanoclusters. We show how classical surface science methods of characterization augmented by chemical analysis methods such as liquid chromatography can be used to provide feedback for improvements in synthetic protocols. Characterization of metal clusters by their optical, catalytic, or magnetic behavior also provides insights leading to improvements in synthetic methods. The collective physical properties of closely interacting clusters are reviewed followed by speculation on future technical applications of clusters. (125 references).
Recent advances in the phosphors used for field emission displays (FEDs) are discussed. After reviewing the range of voltages and phosphors being used in first generation devices, the improved properties of future generation phosphors are reviewed. Specifically, next generation displays will require better low voltage efficiencies, chromaticity, saturation behavior, and maintenance. Possible routes to achieve these improvements are discussed. The improved understanding of the role of charging and surface recombination effects on cathodoluminescent intensity and efficiency is reviewed. An improved understanding of electron beam-stimulated surface chemical reaction effects on the degradation of phosphor is presented. It is concluded that recent research efforts have created a new level of understanding of FED phosphors, and this should lead to the necessary improvements in properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.