Automated vehicles (AVs) may enter the consumer market with various stages of automation in 10 years or even sooner. Meanwhile, regional planning agencies are envisioning plans for time horizons out to 2040 and beyond. To help decision makers understand the effect of AV technology on regional plans, modeling tools should anticipate its impact on transportation networks and traveler choices. This research uses the Seattle, Washington, region's activity-based travel model to test a range of travel behavior impacts from AV technology development. The existing model was not originally designed with AVs in mind, so some modifications to the model assumptions are described in areas of roadway capacity, user values of time, and parking costs. Larger structural model changes were not yet considered. Results of four scenario tests show that improvements in roadway capacity and in the quality of the driving trip may lead to large increases in vehicle miles traveled, while a shift to per mile usage charges may counteract that trend. Travel models will need to have major improvements in the coming years, especially with regard to shared ride, taxi modes, and the effect of multitasking opportunities, to better anticipate the arrival of this technology.
Epidemiological simulations as a method are used to better understand and predict the spreading of infectious diseases, for example of COVID-19.
This paper presents an approach that combines person-centric data-driven human mobility modelling with a mechanistic infection model and a person-centric disease progression model.
Results show that in Berlin (Germany), behavioral changes of the population mostly happened \textit{before} the government-initiated so-called contact ban came into effect. Also, the model is used to determine differentiated changes to the reinfection rate for different interventions such as reductions in activity participation, the wearing of masks, or contact tracing followed by quarantine-at-home.
One important result is that successful contact tracing reduces the reinfection rate by about 30 to 40\%, and that if contact tracing becomes overwhelmed then infection rates immediately jump up accordingly, making rather strong lockdown measures necessary to bring the reinfection rate back to below one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.