This paper proposed a novel first-order single-valued neutrosophic hesitant fuzzy time series (SVNHFTS) forecasting model. Our aim is to improve the previously proposed neutrosophic time series (NTS) model by incorporating the degree of the hesitancy using single-valued neutrosophic hesitant fuzzy set (SVNHFS) model instead of single-valued neutrosophic set (SVNS). Our paper's novelty is that we incorporate an algorithm that automatically converts the crisp dataset into the neutrosophic set that eliminates the need for experts' input or opinions in determining the membership in each of the partitioned neutrosophic set. We also incorporate Markov Chain algorithm in the de-neutrosophication process to include the weightage of the repeating neutrosophic logical relationships (NLRs). Our paper's significant contribution is to add to the existing body of knowledge related to fuzzy time series (FTS) by developing a new FTS model based on SVNHFS, one of the improved version of fuzzy sets, since this area of research is still relatively underdeveloped. To determine our proposed model's capability, we apply our proposed SVNHFTS model to three real datasets while also comparing the result to the other FTS models based on improved versions of fuzzy sets. Our datasets include benchmark enrollment data of University of Alabama, IDX Composite (Indonesian composite stock index), and MERVAL index (Argentinian composite stock index). The result shows that our proposed SVNHFTS model outperforms most of the other FTS models in terms of AFE and RMSE, especially the previously proposed NTS model. INDEX TERMS Single-valued neutrosophic hesitant fuzzy set (SVNHFS), single-valued neutrosophic hesitant fuzzy time series (SVNHFTS), neutrosophic time series (NTS), fuzzy time series (FTS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.