A single step facile synthesis of highly emissive, water-soluble, fluorescent Ag nanoclusters has been reported using a small molecule, dihydrolipoic acid. These clusters were characterized using ultraviolet/visible (UV/vis) spectroscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), dynamic light scattering (DLS), and X-ray diffraction (XRD) studies. Mass spectrometric analysis shows the presence of a few atoms in nanoclusters containing only Ag 4 and Ag 5 . The reported fluorescent Ag nanoclusters show excellent optical properties, including narrow emission profile, larger Stokes shift (more than 200 nm), and good photostability. Interestingly, these nanoclusters also exhibit semiconducting property. Moreover, as-prepared fluorescent Ag nanoclusters have been utilized as an indicator for selective and ultrasensitive detection of highly toxic Hg II ions in water, even at subnanomolar concentrations.
A new class of hydrogelators based on synthetic self-assembling N-terminally Boc-protected tripeptides has been developed. A series of five tripeptides have been synthesized to study their self-assembling behavior in aqueous medium. Three of them form thermoreversible translucent gels at basic pH (pH 11.5-13.5). These hydrogels were characterized by FT-IR spectroscopy, circular dichroism (CD), small angle X-ray diffraction analysis (SAXRD), field-emission scanning electron microscopic (FE-SEM), transmission electron microscopic (TEM) and atomic force microscopic (AFM) studies. These hydrogels can be potentially utilized for the treatment of waste-water and the organic dyes (Rhodamine B, Reactive Blue 4 and Direct Red 80) that are widely used in textile industries can be efficiently removed. Moreover, peptide gelators can be recovered very easily just by changing the pH of the medium.
N-terminally Fmoc-protected dipeptide, Fmoc-Val-Asp-OH, forms a transparent, stable hydrogel with a minimum gelation concentration of 0.2% w/v. The gelation property of the hydrogel was investigated by using methods such as transmission electron microscopy, field-emission scanning electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy. The silver-ion-encapsulating hydrogel can efficiently and spontaneously produce fluorescent silver nanoclusters under sunlight at physiological pH (7.46) by using a green chemistry approach. Interestingly, in the absence of any conventional reducing agent but in the presence of sunlight, silver ions were reduced by the carboxylate group of a gelator peptide that contains an aspartic acid residue. These clusters were investigated by using UV/Vis spectroscopy, photoluminescence spectroscopy, high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) studies. Mass spectrometric analysis shows the presence of a few atoms in nanoclusters containing only Ag(2). The reported fluorescent Ag nanoclusters show excellent optical properties, including a very narrow emission profile and large Stokes shift (>100 nm). The reported fluorescent Ag nanoclusters within hydrogel are very stable even after 6 months storage in the dark at 4 °C. The as-prepared hydrogel-nanocluster conjugate could have applications in antibacterial preparations, bioimaging and other purposes.
In this study, stable supramolecular hydrogels have been obtained from the assembly of graphene oxide (GO) in presence of polyamines including tris(aminoethyl)amine, spermine, and spermidine [biologically active molecule]. One of these hydrogels has been well characterized by various techniques including field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD) study, and Raman spectroscopy. TEM and AFM studies of one of these hydrogels have revealed the presence of a network structure of cross-linked nanosheets. This suggests the supramolecular assembly of GO in the presence of polyamines using the acid-base type electrostatic interaction. In presence of a mild reducing agent (vitamin C), one of these GO hydrogels has been transformed into a reduced graphene oxide (RGO)-based hydrogel by a simple in situ reduction of GO sheets within the hydrogel matrix. Moreover, noble metal nanoparticle containing RGO based hybrid hydrogels have been obtained using in situ and simultaneous co-reduction of GO and noble metal precursors within the GO gel matrix. The elegance of this method is in situ, "green chemical" and simultaneous reduction of GO and metal salts within the hydrogel matrix to form RGO-based hybrid gel and concomitant stabilization of metal nanoparticles (MNPs) within the gel system. The nascently formed MNPs are homogeneously and uniformly distributed on the surface of the RGO nanosheets within the hybrid gel. Interestingly, this MNP containing RGO-based hybrid hydrogel matrix acts as a potential catalyst for the reduction of aromatic nitro to amino group. The catalyst (hybrid gel matrix) can be separated easily after the reaction and reused several times.
The N-terminally pyrene-conjugated oligopeptide, Py-Phe-Phe-Ala-OMe, (Py=pyrene 1-butyryl acyl) forms transparent, stable, supramolecular fluorescent organogels in various organic solvents. One of these organogels was thoroughly studied using various techniques including transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), Fourier-transform infrared (FTIR) spectroscopy, photoluminescence (PL) spectroscopy, and rheology. Unfunctionalized and non-oxidized graphene was successfully incorporated into this fluorescent organogel in o-dichlorobenzene (ODCB) to form a stable hybrid organogel. Graphene is well dispersed into the gel medium by using non-covalent π-π stacking interactions with the pyrene-conjugated gelator peptide. In the presence of graphene, the minimum gelation concentration (mgc) of the hybrid organogel was lowered significantly. This suggests that there is a favorable interaction between the graphene and the gelator peptide within the hybrid organogel system. This hybrid organogel was characterized using TEM, AFM, FTIR, PL, and rheological studies. The TEM study of graphene-containing hybrid organogel revealed the presence of both graphene sheets and entangled gel nanofibers. The AFM study indicated the presence of 3 to 4 layers in exfoliated graphene in ODCB and the presence of both graphene nanosheets and the network of gel nanofibers in the hybrid gel system. The rheological investigation suggested that the flow of the hybrid organogel had become more resistant towards the applied angular frequency upon the incorporation of graphene into the organogel. The hybrid gel is about seven times more rigid than that of the native gel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.