A model is developed based on the time-related thermal diffusion equations to investigate the effects of two-dimensional shear flow on the stability of a crystal interface in the supercooled melt of a pure substance. Similar to the three-dimensional shear flow as described in our previous paper, the two-dimensional shear flow can also be found to reduce the growth rate of perturbation amplitude. However, compared with the case of the Laplace equation for a steady-state thermal diffusion field, due to the existence of time partial derivatives of the temperature fields in the diffusion equation the absolute value of the gradients of the temperature fields increases, therefore destabilizing the interface. The circular interface is more unstable than in the case of Laplace equation without time partial derivatives. The critical stability radius of the crystal interface increases with shearing rate increasing. The stability effect of shear flow decreases remarkably with the increase of melt undercooling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.