Production of N-acetyl-D-neuraminic acid (Neu5Ac) via biocatalysis is traditionally conducted using isolated enzymes or whole cells. The use of isolated enzymes is restricted by the time-consuming purification process, whereas the application of whole cells is limited by the permeability barrier presented by the microbial cell membrane. In this study, a novel type of biocatalyst, Neu5Ac aldolase presented on the surface of Bacillus subtilis spores, was used for the production of Neu5Ac. Under optimal conditions, Neu5Ac at a high concentration (54.7 g liter ؊1 ) and a high yield (90.2%) was obtained under a 5-fold excess of pyruvate over N-acetyl-D-mannosamine. The novel biocatalyst system, which is able to express and immobilize the target enzyme simultaneously on the surface of B. subtilis spores, represents a suitable alternative for value-added chemical production.
Chemoenzymatic synthesis ofN-acetyl-d-neuraminic acid fromN-acetyl-d-glucosamine using the spore surface-displayedN-acetyl-d-neuraminic acid aldolase at a high concentration (53.9 g liter−1) was achieved in this study. Thus, displaying a target enzyme on the surface of spores might be an alternative for integration of biocatalytic conversion into chemical synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.