Crops must efficiently allocate their limited energy resources to survival, growth and reproduction, including balancing growth and defense. Thus, investigating the underlying molecular mechanism of crop under stress is crucial for breeding. Chloroplasts immunity is an important facet involving in plant resistance and growth, however, whether and how crop immunity modulated by chloroplast is influenced by epigenetic regulation remains unclear. Here, the cotton lysine 2‐hydroxyisobutyrylation (Khib) and succinylation (Ksuc) modifications are firstly identified and characterized, and discover that the chloroplast proteins are hit most. Both modifications are strongly associated with plant resistance to Verticillium dahliae, reflected by Khib specifically modulating PR and salicylic acid (SA) signal pathway and the identified GhHDA15 and GhSRT1 negatively regulating Verticillium wilt (VW) resistance via removing Khib and Ksuc. Further investigation uncovers that photosystem repair protein GhPSB27 situates in the core hub of both Khib‐ and Ksuc‐modified proteins network. The acylated GhPSB27 regulated by GhHDA15 and GhSRT1 can raise the D1 protein content, further enhancing plant biomass‐ and seed‐yield and disease resistance via increasing photosynthesis and by‐products of chloroplast‐derived reactive oxygen species (cROS). Therefore, this study reveals a mechanism balancing high disease resistance and high yield through epigenetic regulation of chloroplast protein, providing a novel strategy to crop improvements.
Comparative transcriptome analysis of fiber tissues between Gossypium barbadense and Gossypium hirsutum could reveal the molecular mechanisms underlying high-quality fiber formation and identify candidate genes for fiber quality improvement. In this study, 759 genes were found to be strongly upregulated at the elongation stage in G. barbadense, which showed four distinct expression patterns (I–IV). Among them, the 346 genes of group IV stood out in terms of the potential to promote fiber elongation, in which we finally identified 42 elongation-related candidate genes by comparative transcriptome analysis between G. barbadense and G. hirsutum. Subsequently, we overexpressed GbAAR3 and GbTWS1, two of the 42 candidate genes, in Arabidopsis plants and validated their roles in promoting cell elongation. At the secondary cell wall (SCW) biosynthesis stage, 2275 genes were upregulated and exhibited five different expression profiles (I–V) in G. barbadense. We highlighted the critical roles of the 647 genes of group IV in SCW biosynthesis and further picked out 48 SCW biosynthesis-related candidate genes by comparative transcriptome analysis. SNP molecular markers were then successfully developed to distinguish the SCW biosynthesis-related candidate genes from their G. hirsutum orthologs, and the genotyping and phenotyping of a BC3F5 population proved their potential in improving fiber strength and micronaire. Our results contribute to the better understanding of the fiber quality differences between G. barbadense and G. hirsutum and provide novel alternative genes for fiber quality improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.