A scanning-helium-ion-beam microscope is now commercially available. This microscope can be used to perform lithography similar to, but of potentially higher resolution than, scanning electron-beam lithography. This article describes the control of this microscope for lithography via beam steering/blanking electronics and evaluates the high-resolution performance of scanning helium-ion-beam lithography. The authors found that sub-10 nm-half-pitch patterning is feasible. They also measured a point-spread function that indicates a reduction in the micrometer-range proximity effect typical in electron-beam lithography.
The development of metrology for nanoparticles is a significant challenge. Cellulose nanocrystals (CNCs) are one group of nanoparticles that have high potential economic value but present substantial challenges to the development of the measurement science. Even the largest trees owe their strength to this newly appreciated class of nanomaterials. Cellulose is the world's most abundant natural, renewable, biodegradable polymer. Cellulose occurs as whisker-like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. The nanocrystals are isolated by hydrolyzing away the amorphous segments leaving the acid resistant crystalline fragments. Therefore, the basic raw material for new nanomaterial products already abounds in nature and is available to be utilized in an array of future materials. However, commercialization requires the development of efficient manufacturing processes and nanometrology to monitor quality. This paper discusses some of the instrumentation, metrology and standards issues associated with the ramping up for production and use of CNCs.
The width and shape of 10nm to 12 nm wide lithographically patterned SiO2 lines were measured in the scanning electron microscope by fitting the measured intensity vs. position to a physics-based model in which the lines' widths and shapes are parameters. The approximately 32 nm pitch sample was patterned at Intel using a state-of-the-art pitch quartering process. Their narrow widths and asymmetrical shapes are representative of near-future generation transistor gates. These pose a challenge: the narrowness because electrons landing near one edge may scatter out of the other, so that the intensity profile at each edge becomes width-dependent, and the asymmetry because the shape requires more parameters to describe and measure. Modeling was performed by JMONSEL (Java Monte Carlo Simulation of Secondary Electrons), which produces a predicted yield vs. position for a given sample shape and composition. The simulator produces a library of predicted profiles for varying sample geometry. Shape parameter values are adjusted until interpolation of the library with those values best matches the measured image. Profiles thereby determined agreed with those determined by transmission electron microscopy and critical dimension small-angle x-ray scattering to better than 1 nm.
Resolution is a key performance metric, which often defines the quality of a scanning electron microscope (SEM). Traditionally, there is the subjective measurement of the distance between two points on special "resolution" samples and there are several computer-based resolution-calculation methods. These computer-based resolution-calculation methods are much more precise than direct measurement, but none of them can currently be considered an objective way of measuring the resolution. The methods are still under development; therefore, objective testing is necessary. One approach to algorithm testing is to use simulated images. Simulated images are very useful for this purpose because they can be well-defined in all parameters unlike the real SEM images. Simulated images can be generated that closely mimic the gold-on-carbon SEM test sample images that usually consist of bright grains on a dark background. Simulation can account for edge effect, roughness of the substrate, different focusing, drift and vibration, and noise. Shapes, positions, and sizes of the grain structures are random. The simulated images can be then used for testing the resolution-calculation methods, especially for finding how the particular properties of SEM images affect the resultant instrument performance and image resolution. To support this testing, NIST has developed and made available a reference set of simulated SEM images generated using the methods described in this article.
All forms of microscopy are being pushed to the limit by nanotechnology. This is especially true for high-resolution scanning electron and helium ion microscopes, which are proving to be extremely useful for nanometer-scale imaging, characterization, and dimensional measurements. Excellent resolution is essential for imaging nanomaterials. Hence, there is a relentless quest to achieve better and better resolution with various electron and ion microscopes and to monitor and maintain these instruments to achieve the best possible performance levels.The ability to resolve fine details with a microscope has greatly improved over the past 20 years. The resolution achievable with the newest scanning electron microscopes (SEMs) can now be at or below 0.4 nm and for the scanning helium ion microscope (HeIM), 0.24 nm has been reported. To put this into perspective, the {111} crystal plane in silicon (Si) has 0.32 nm lattice spacing, so one cubic nanometer in the Si crystal contains only a few atoms. Therefore, an instrument must be performing at the highest level possible to resolve routinely the finest structures. Clearly, the instrument operator must also be functioning at a high level as well to achieve the best resolution and to prove that the instrument is capable of doing the work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.