Mitochondria can be used as important biomarkers of pollutants on human health, and fine particulate matter (PM) has been documented to cause respiratory damage. However, current studies about the relationship between PM and mitochondria in respiratory tract are limited and warrant further detailed investigations. Hence, the study was aimed to evaluate effects of PM on mitochondrial structure, investigate the link between PM-induced mitochondrial disorder and respiratory damage, and delineate the possible mechanisms using both in vitro and in vivo models. PM exposure resulted in damage of mitochondrial structure, including mitochondrial dynamic, DNA biogenesis and morphological alteration 16HBE cells. Furthermore, PM elevated ROS formation. However, DPI and NAC (inhibitor of ROS) in supplement restored PM-induced mitochondrial disorder. PM also contributed to the 16HBE cells apoptosis via mitochondrial pathway. Additionally, the results coincided with the in vivo data which were obtained from bronchial tissues of SD rats exposed to PM for 30 days. Collectively, this study uncovers that PM leads to the disorder of mitochondrial structure via ROS generation, and then results in respiratory damage. It provides further understanding about the detrimental effect of PM on respiratory damage, and reveals a mechanistic basis for preventing outcomes in polluted environments.
Taken together, our data describe how a high level of ROS plays a critical role in enhancing the proinvasion characteristic of TAMs in malignant melanoma.
The function of plant polyphenols in controlling body weight has been in focus for a long time. The aim of this study was to investigate the effect of plant polyphenols on fecal microbiota utilizing oligosaccharides. Three plant polyphenols, quercetin, catechin and puerarin, were added into liquid media for fermenting for 24 h. The pH values, OD600 of the cultures and the content of carbohydrates at 0, 6, 10, 14, 18 and 24 h were determined. The abundance of Bacteroidetes and Firmicutes in each culture was quantified with qPCR after 10 h of fermentation, and the bacterial composition was analyzed using the software Quantitative Insights Into Microbial Ecology. The results revealed that all three plant polyphenols could significantly inhibit the growth of Bacteroidetes (P < 0.01) and Firmicutes (P < 0.01) while at the same time down-regulate the ratio of Bacteroidetes to Firmicutes (P < 0.01). But the fecal bacteria could maintain the ability to hydrolyze fructo-oligosaccharide (FOS) in vitro. Among the tested polyphenols, catechin presented the most intense inhibitory activity towards the growth of Bacteroidetes and Firmicutes, and quercetin was the second. Only the samples with catechin had a significantly lower energy metabolism (P < 0.05). In conclusion, plant polyphenols can change the pathway of degrading FOS or even energy metabolism in vivo by altering gut microbiota composition. It may be one of the mechanisms in which plant polyphenols can lead to body weight loss. It's the first report to study in vitro gastrointestinal microbiota fermenting dietary fibers under the intervention of plant polyphenols.
Both fructooligosaccharide (FOS) and polyphenols can be individually and directly transferred to the large intestine of mammals and are beneficial for human health as they reshape the composition of gut microbiota. The combination impact of FOS and polyphenols on rats' gut microbiota and the corresponding consequences on rats were investigated via MiSeq sequencing technique and bioinformatics. The results showed that the combination of different phenolic compounds and FOS displayed distinct impact on the host. The addition of catechin to a FOS diet inhibited Firmicutes and enhanced Bacteroidetes. Moreover, the content of each short chain fatty acid fluctuated in various groups because different unique bacterial species survived or were inhibited under three conditions. On the other aspects, the supplement of catechin controlled the body weight (BW), up-regulated serum leptin, induced more soluble carbohydrates and less soluble polysaccharides in feces, and inhibited or activated some specific genera. The inhibition of genera by catechin could be responsible for the degradation of carbohydrates in gut and the activation of genera might be keystones for the increment of serum leptin. The effect of consuming FOS and/or polyphenols on the health of hosts needs to be further explored.
The impact of flavonoids has been discussed on the relative viability of bacterial groups in human microbiota. This study was aimed to compare the modulation of various flavonoids, including quercetin, catechin and puerarin, on gut microbiota culture in vitro, and analyze the interactions between bacterial species using fructo-oligosaccharide (FOS) as carbon source under the stress of flavonoids. Three plant flavonoids, quercetin, catechin, and puerarin, were added into multispecies culture to ferment for 24 h, respectively. The bacterial 16S rDNA amplicons were sequenced, and the composition of microbiota community was analyzed. The results revealed that the tested flavonoids, quercetin, catechin, and puerarin, presented different activities of regulating gut microbiota; flavonoid aglycones, but not glycosides, may inhibit growth of certain species. Quercetin and catechin shaped unique biological webs. Bifidobacterium spp. was the center of the biological web constructed in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.