From observations of self-assembly of Ge quantum dots directed by substrate morphology, we propose the concept of control of ordering in heteroepitaxy by a local strain-mediated surface chemical potential. Using quite simple lithography, we demonstrate directed quantum dot ordering. The strain part of the chemical potential is caused by the spatially nonuniform relaxation of the strained layer, which in our study is the Ge wetting layer, but, more generally, can be a deposited strained buffer layer. This model provides a consistent picture of prior literature.
Visible light photocatalytic H(2) production from water splitting using solar light is of great importance from the viewpoint of solar energy conversion and storage. In this study, a novel visible-light-driven photocatalyst multiwalled carbon nanotube modified Cd(0.1)Zn(0.9)S solid solution (CNT/Cd(0.1)Zn(0.9)S) was prepared by a simple hydrothermal method. The prepared samples exhibited enhanced photocatalytic H(2)-production activity under visible light. CNT content had a great influence on photocatalytic activity and an optimum amount of CNT was determined to be ca. 0.25 wt%, at which the CNT/Cd(0.1)Zn(0.9)S displayed the highest photocatalytic activity under visible light, giving an H(2)-production rate of 78.2 μmol h(-1) with an apparent quantum efficiency (QE) of 7.9% at 420 nm, even without any noble metal cocatalysts, exceeding that of pure Cd(0.1)Zn(0.9)S by more than 3.3 times. The enhanced photocatalytic activity was due to CNT as an excellent electron acceptor and transporter, thus reducing the recombination of charge carriers and enhancing the photocatalytic activity. Furthermore, the prepared sample was photostable and no photocorrosion was observed after photocatalytic recycling. Our findings demonstrated that CNT/Cd(0.1)Zn(0.9)S composites were a promising candidate for the development of high-performance photocatalysts in photocatalytic H(2) production. This work not only shows a possibility for the utilization of low cost CNT as a substitute for noble metals (such as Pt) in the photocatalytic H(2)-production but also for the first time shows a significant enhancement in the H(2)-production activity by using metal-free carbon materials as effective co-catalysts.
Abstract. Sulfur K-edge x-ray absorption spectra (XANES and EXAFS) and L-edge XANES of sphalerite (ZnS), chalcopyrite (CuFeS2) and stannite (Cu2FeSnS4) have been recorded using synchrotron radiation. The K-and L-edge XANES features are interpreted using a qualitative MO/energy band structure model. The densities of unoccupied states at the conduction bands of sphalerite, chalcopyrite and stannite are determined using S K-and L-edge XANES features (up to 15 eV above the edge), combined with published metal K-edge XANES. The S K-and L-edge XANES also indicate that, for sphalerite, the Fe 2 § 3 d band at the fundamental gap has little or no bonding hybridization with S 3p and S 3s orbitals; for chalcopyrite, the Cu § 3d and Fe 3+ 3d bands have strong mixing with S 3p and S 3s states, while for stannite the Cu § 3 d band strongly hybridizes with S 3 p and S 3 s orbitals, but the Fe 2 § 3 d band does not. The post-edge XANES features (15-50 eV above the edge) of sphalerite, chalcopyrite and stannite are similar. These features are related to the tetrahedral coordination of sulfur in all these structures, and interpreted by a multiple scattering model. The resonance energies from both the K-edge and L-edge XANES for these minerals are well correlated with reciprocal interatomic distances and lattice spaces. Sulfur K-edge EXAFS analyses using Fourier transform and curve fitting procedures are presented. Comparison of the structural parameters from EXAFS with x-ray structure data shows that the first shell bond distances (BD) from EXAFS are usually accurate to _+ 0.02/~, and that coordination numbers (CN) are generally accurate to + 20 percent. For sphalerite, EXAFS analysis yields the structure parameters for the first three neighbour shells around a sulfur atom; the BD and CN even for the third shell are in close agreement with the x-ray structure, and the Debye-Waller term decreases from the first shell to the third shell. It is shown that sphalerite (ZnS) is a good model compound for EXAFS analysis of sulfur in chalcogenide glasses and metalloproteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.