BackgroundAtrial fibrillation is the most common recurrent arrhythmia in clinical practice, with most clinical events occurring outside the hospital. Low detection and nonadherence to guidelines are the primary obstacles to atrial fibrillation management. Photoplethysmography is a novel technology developed for atrial fibrillation screening. However, there has been limited validation of photoplethysmography-based smart devices for the detection of atrial fibrillation and its underlying clinical factors impacting detection.ObjectiveThis study aimed to explore the feasibility of photoplethysmography-based smart devices for the detection of atrial fibrillation in real-world settings.MethodsSubjects aged ≥18 years (n=361) were recruited from September 14 to October 16, 2018, for screening of atrial fibrillation with active measurement, initiated by the users, using photoplethysmography-based smart wearable devices (ie, a smart band or smart watches). Of these, 200 subjects were also automatically and periodically monitored for 14 days with a smart band. The baseline diagnosis of “suspected” atrial fibrillation was confirmed by electrocardiogram and physical examination. The sensitivity and accuracy of photoplethysmography-based smart devices for monitoring atrial fibrillation were evaluated.ResultsA total of 2353 active measurement signals and 23,864 periodic measurement signals were recorded. Eleven subjects were confirmed to have persistent atrial fibrillation, and 20 were confirmed to have paroxysmal atrial fibrillation. Smart devices demonstrated >91% predictive ability for atrial fibrillation. The sensitivity and specificity of devices in detecting atrial fibrillation among active recording of the 361 subjects were 100% and about 99%, respectively. For subjects with persistent atrial fibrillation, 127 (97.0%) active measurements and 2240 (99.2%) periodic measurements were identified as atrial fibrillation by the algorithm. For subjects with paroxysmal atrial fibrillation, 36 (17%) active measurements and 717 (19.8%) periodic measurements were identified as atrial fibrillation by the algorithm. All persistent atrial fibrillation cases could be detected as “atrial fibrillation episodes” by the photoplethysmography algorithm on the first monitoring day, while 14 (70%) patients with paroxysmal atrial fibrillation demonstrated “atrial fibrillation episodes” within the first 6 days. The average time to detect paroxysmal atrial fibrillation was 2 days (interquartile range: 1.25-5.75) by active measurement and 1 day (interquartile range: 1.00-2.00) by periodic measurement (P=.10). The first detection time of atrial fibrillation burden of <50% per 24 hours was 4 days by active measurement and 2 days by periodic measurementThe first detection time of atrial fibrillation burden of >50% per 24 hours was 1 day for both active and periodic measurements (active measurement: P=.02, periodic measurement: P=.03).ConclusionsPhotoplethysmography-based smart devices demonstrated good atrial fibrillation predictive ability in both act...
The efficiency of light-emitting diode (LED) devices is a significant factor that reflects the capability of these devices to convert electrical power into optical power. In this study, a method for estimating the efficiency of LED devices is proposed. An efficiency model and a heat power model are established as convenient tools for LED performance evaluation. Such models can aid in the design of LED drivers and in the reliability evaluation of LED devices. The proposed estimation method for the efficiency and heat power of LED devices is verified by experimentally testing two types of commercial LED devices.
The advantages of a GaN-AlGaN-InGaN last quantum barrier (LQB) in an InGaN-based blue light-emitting diode are analyzed via numerical simulation. We found an improved light output power, lower current leakage, higher recombination rate, and less efficiency droop compared with conventional GaN LQBs. These improvements in the electrical and optical characteristics are attributed mainly to the specially designed GaN-AlGaN-InGaN LQB, which enhances electron confinement and improves hole injection efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.