Ubiquitin-conjugating enzyme E2 J2 (UBE2J2) is an ubiquitin proteasome component that responds to proteotoxic stress. We found that UBE2J2 was highly expressed in cellular protrusions of HCCLM3 metastatic hepatocellular carcinoma (HC) cells. Immunohistochemical analyses showed that UBE2J2 was expressed at higher levels in HC patient tissues than in corresponding non-tumor tissues. Because cellular protrusions are important for cell invasion, we hypothesized that UBE2J2 promotes HC cell invasion. We used chip-based surface plasmon resonance (SPR) to assess possible mechanisms of UBE2J2-regulated HCCLM3 cell invasion. We found that p-EGFR interacted with UBE2J2, and this finding was confirmed by co-immunoprecipitation analysis. UBE2J2 overexpression activated endothelial-mesenchymal transition in the non-invasive SMMC7721 HC cell line, and promoted invasion. UBE2J2 silencing reduced HCCLM3 cell invasion and endocytosis, and downregulated p-EGFR expression. p-EGFR inhibition by lapatinib reduced UBE2J2-promoted cell invasion, suggesting p-EGFR is important for UBE2J2-mediated HCCLM3 cell invasion. These findings demonstrate that endocytosis by HC cells is closely related to invasion, and may provide new anti-HC therapeutic targets. UBE2J2 may also be a novel biomarker for clinical HC diagnosis.
Aims Propofol may result in hypotension, bradycardia and loss of protective reflexes, especially in elderly patients, while esketamine, a N‐methyl‐D‐aspartate receptor antagonist, has analgesic, anaesthetic and sympathomimetic properties and is known to cause less cardiorespiratory depression. We hypothesized that esketamine may reduce the median effective concentration (EC50) of propofol and coadministration is less likely to produce hypotension during gastrointestinal endoscopy in elderly patients. Methods Ninety elderly patients, aged 65–89 years, undergoing gastrointestinal endoscopy were randomly assigned into 3 groups: SK0 (control) group (0 mg/kg esketamine); SK0.25 group (0.25 mg/kg esketamine); and SK0.5 group (0.5 mg/kg esketamine). Anaesthesia was achieved by plasma target‐controlled infusion of propofol with different bolus doses of esketamine. The EC50 of propofol for gastrointestinal endoscopy was determined by using the up‐and‐down method of Dixon. The initial plasma target concentration is 2.5 μg/mL and the adjacent concentration gradient is 0.5 μg/mL. Cardiovascular variables were also measured. Results Propofol EC50s and its 95% confidence interval for gastrointestinal endoscopy in elderly patients were 3.69 (2.59–4.78), 2.45 (1.85–3.05) and 1.71 (1.15–2.27) μg/mL in the SK0, SK0.25 and SK0.5 groups, respectively (P < .05). The average percent change from baseline mean arterial pressure was −19.7 (7.55), −15.2 (7.14) and −10.1 (6.73), in the SK0, SK0.25 and SK0.5 groups, respectively (P < .001). Conclusion Combination medication of propofol with esketamine reduced the propofol EC50 during gastrointestinal endoscopy in elderly patients compared with administration of propofol without esketamine. Increasing doses of SK with propofol are less likely to produce hypotension with shorter recovery time.
BackgroundWhile previous studies have demonstrated neuronal apoptosis and associated cognitive impairment after isoflurane or propofol exposure in neonatal rodents, the effects of these two anesthetics have not been directly compared. Here, we compare and contrast the effectiveness of isoflurane and propofol to cause neurodegeneration in the developing brain and associated cognitive dysfunction.MethodsSeven-day-old mice were used. Mice in the isoflurane treatment group received 6 h of 1.5% isoflurane, while mice in propofol treatment group received one peritoneal injection (150 mg/kg), which produced persistent anesthesia with loss of righting for at least 6 h. Mice in control groups received carrying gas or a peritoneal injection of vehicle (intralipid). At 6 h after anesthetic treatment, a subset of each group was sacrificed and examined for evidence of neurodegeneration, using plasma levels of S100β, and apoptosis using caspase-3 immunohistochemistry in the cerebral cortex and hippocampus and Western blot assays of the cortex. In addition, biomarkers for inflammation (interleukin-1, interleukin-6, and tumor necrosis factor alpha) were examined with Western blot analyses of the cortex. In another subset of mice, learning and memory were assessed 32 days after the anesthetic exposures using the Morris water maze.ResultsIsoflurane significantly increased plasma S100β levels compared to controls and propofol. Both isoflurane and propofol significantly increased caspase-3 levels in the cortex and hippocampus, though isoflurane was significantly more potent than propofol. However, there were no significant differences in the inflammatory biomarkers in the cortex or in subsequent learning and memory between the experimental groups.ConclusionBoth isoflurane and propofol caused significant apoptosis in the mouse developing brain, with isoflurane being more potent. Isoflurane significantly increased levels of the plasma neurodegenerative biomarker, S100β. However, these neurodegenerative effects of isoflurane and propofol in the developing brain were not associated with effects on inflammation or with cognitive dysfunction in later life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.