We report that nanoscale carbon particles (carbon dots) upon simple surface passivation are strongly photoluminescent in both solution and the solid state. The luminescence emission of the carbon dots is stable against photobleaching, and there is no blinking effect. These strongly emissive carbon dots may find applications similar to or beyond those of their widely pursued silicon counterparts.
Domestic chickens are valuable sources of protein associated with producing meat and eggs for humans. The gastrointestinal tract (GIT) houses a large microbial community, and these microbiota play an important role in growth and health of chickens, contributing to the enhancement of nutrient absorption and improvement of the birds' immune systems. To improve our understanding of the chicken intestinal microbial composition, microbiota inhabiting 5 different intestinal locations (duodenum, jejunum, ileum, cecum, and colon) of 42-day-old broiler chickens were detected based on 16S rRNA gene sequence analysis. As a result, 1,502,554 sequences were clustered into 796 operational taxonomic units (OTUs) at the 97% sequence similarity value and identified into 15 phyla and 288 genera. Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Cyanobacteria were the major microbial groups and Firmicutes was the dominant phylum in duodenum, jejunum, ileum and colon accounting for > 60% of sequences, while Bacteroidetes was the dominant phylum in cecum (>50% of sequences), but little in the other four gut sections. At the genus level, the major microbial genera across all gut sections were Lactobacillus, Enterococcus, Bacteroides, and Corynebacterium. Lactobacillus was the predominant genus in duodenum, jejunum, and ileum (>35%), but was rarely present in cecum, and Bacteroides was the most dominant group in cecum (about 40%), but rarely present in the other 4 intestinal sections. Differences of microbial composition between the 5 intestinal locations might be a cause and consequence of gut functional differences and may also reflect host selection mediated by innate or adaptive immune responses. All these results could offer some information for the future study on the relationship between intestinal microbiota and broiler chicken growth performance as well as health.
Antimicrobial resistant determinants (ARDs) can be transmitted from livestock systems through meat products or environmental effluents. The public health risk posed by these two routes is not well understood, particularly in non-pathogenic bacteria. We collected pooled samples from 8 groups of 1741 commercial cattle as they moved through the process of beef production from feedlot entry through slaughter. We recorded antimicrobial drug exposures and interrogated the resistome at points in production when management procedures could potentially influence ARD abundance and/or transmission. Over 300 unique ARDs were identified. Resistome diversity decreased while cattle were in the feedlot, indicating selective pressure. ARDs were not identified in beef products, suggesting that slaughter interventions may reduce the risk of transmission of ARDs to beef consumers. This report highlights the utility and limitations of metagenomics for assessing public health risks regarding antimicrobial resistance, and demonstrates that environmental pathways may represent a greater risk than the food supply.DOI: http://dx.doi.org/10.7554/eLife.13195.001
Summary Atoh1 encodes a basic helix-loop-helix (bHLH) transcription factor required for the development of the inner ear sensory epithelia, the dorsal spinal cord, brainstem, cerebellum, and intestinal secretory cells. In this study to create a genetic tool for the research on gene function in the ear sensory organs, we generated an Atoh1-Cre knock-in mouse line by replacing the entire Atoh1 coding sequences with the Cre coding sequences. Atoh1Cre/+mice were viable, fertile, and displayed no visible defects whereas the Atoh1Cre/Cremice died perinatally. The spatiotemporal activities of Cre recombinase were examined by crossing Atoh1-Cre mice with the R26R-lacZ conditional reporter mice. Atoh1-Cre activities were detected in the developing inner ear, the hindbrain, the spinal cord, and the intestine. In the inner ear, Atoh1-Cre activities were confined to the sensory organs in which lacZ expression is detected in nearly all of the hair cells and in many supporting cells. Thus, Atoh1-Cre mouse line serves as a useful tool for the functional study of genes in the inner ear. In addition, our results demonstrate that Atoh1 is expressed in the common progenitors destined for both hair and supporting cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.