Patients with diabetes are physiologically frail and more likely to suffer from infections and even life-threatening sepsis. This study aimed to identify and verify potential biomarkers of diabetes-related sepsis (DRS). Datasets GSE7014, GSE57065, and GSE95233 from the Gene Expression Omnibus were used to explore diabetes- and sepsis-related differentially expressed genes (DEGs). Gene set enrichment analysis (GSEA) and functional analyses were performed to explore potential functions and pathways associated with sepsis and diabetes. Weighted gene co-expression network analysis (WGCNA) was performed to identify diabetes- and sepsis-related modules. Functional enrichment analysis was performed to determine the characteristics and pathways of key modules. Intersecting DEGs that were also present in key modules were considered as common DEGs. Protein-protein interaction (PPI) network and key genes were analyzed to screen hub genes involved in DRS development. A mouse C57 BL/6J-DRS model and a neural network prediction model were constructed to verify the relationship between hub genes and DRS. In total, 7457 diabetes-related DEGs and 2606 sepsis-related DEGs were identified. GSEA indicated that gene datasets associated with diabetes and sepsis were mainly enriched in metabolic processes linked to inflammatory responses and reactive oxygen species, respectively. WGCNA indicated that grey60 and brown modules were diabetes- and sepsis-related key modules, respectively. Functional analysis showed that grey60 module genes were mainly enriched in cell morphogenesis, heart development, and the PI3K-Akt signaling pathway, whereas genes from the brown module were mainly enriched in organelle inner membrane, mitochondrion organization, and oxidative phosphorylation. UBE2D1, IDH1, DLD, ATP5C1, COX6C, and COX7C were identified as hub genes in the PPI network. Animal DRS and neural network prediction models indicated that the expression levels of UBE2D1 and COX7C in DRS models and samples were higher than control mice. UBE2D1 and COX7C were identified as potential biomarkers of DRS. These findings may help develop treatment strategies for DRS.
Background: The aim of the present study was to evaluate the therapeutic effect of high-flow nasal cannula (HFNC) oxygen therapy on patients with aspiration pneumonia accompanied by respiratory failure in the post-stroke sequelae stage, with the goal of providing more effective oxygen therapy and improving patient prognosis. Methods: Retrospective analysis was conducted on 103 elderly patients with post-stroke aspiration pneumonia and moderate respiratory failure (oxygenation index: 100–200 mmHg) that had been admitted. The patients were divided into two groups according to the mode of oxygen therapy that was used: the Venturi mask group and the HFNC treatment group. The two groups were analyzed and compared in terms of the changes in the blood gas indices measured at different points in time (4, 8, 12, 24, 48, and 72 h), the proportion of patients that required transition to invasive auxiliary ventilation, and the 28-day mortality rate. Results: A total of 103 patients were retrospectively analyzed; 16 cases were excluded, and 87 patients were included in the final patient group (42 in the HFNC group and 45 in the Venturi group). There was a statistically significant difference in the oxygenation indices of the HFNC group and the Venturi group (F = 546.811, P < 0.05). There was a statistically significant interaction between the monitored oxygenation indices and the mode of oxygen therapy (F = 70.961, P < 0.05), and there was a statistically significant difference in the oxygenation indices for the two modes of oxygen therapy (F = 256.977, P < 0.05). HFNC therapy contributed to the improvement of the oxygenation indices at a rate of 75.1%. The Venturi and HFNC groups also differed significantly in terms of the proportion of patients that required transition to invasive auxiliary ventilation within 72 h (P < 0.05). The HFNC group’s risk for invasive ventilation was 0.406 times that of the Venturi group (P < 0.05). There was no statistical difference in the 28-day mortality rate of the two groups (P > 0.05). Conclusion: HFNC could significantly improve the oxygenation state of patients with post-stroke aspiration pneumonia and respiratory failure, and it may reduce the incidence of invasive ventilation.
Background:The effect of intra-operative chemotherapy (IOC) on the long-term survival of patients with colorectal cancer (CRC) remains unclear. In this study, we evaluated the independent effect of intra-operative infusion of 5-fluorouracil in combination with calcium folinate on the survival of CRC patients following radical resection.Methods:1820 patients were recruited, and 1263 received IOC and 557 did not. Clinical and demographic data were collected, including overall survival (OS), clinicopathological features, and treatment strategies. Risk factors for IOC-related deaths were identified using multivariate Cox proportional hazards models. A regression model was developed to analyze the independent effects of IOC.Results:Proportional hazard regression analysis showed that IOC (hazard ratio [HR]=0.53, 95% confidence intervals [CI] [0.43, 0.65], P < 0.001) was a protective factor for the survival of patients. The mean overall survival time in IOC group was 82.50 (95% CI [80.52, 84.49]) months, and 71.21 (95% CI [67.92, 74.50]) months in non-IOC group. The OS in IOC-treated patients were significantly higher than non-IOC-treated patients (P < 0.001, log-rank test). Further analysis revealed that IOC decreased the risk of death in patients with CRC in a non-adjusted model (HR=0.53, 95% CI [0.43, 0.65], P < 0.001), model 2 (adjusted for age and gender, HR=0.52, 95% CI [0.43, 0.64], P < 0.001), and model 3 (adjusted for all factors, 95% CI 0.71 [0.55, 0.90], P = 0.006). The subgroup analysis showed that the HR for the effect of IOC on survival was lower in patients with stage II (HR = 0.46, 95% CI [0.31, 0.67]) or III disease (HR=0.59, 95% CI [0.45, 0.76]), regardless of pre-operative radiotherapy (HR=0.55, 95% CI [0.45, 0.68]) or pre-operative chemotherapy (HR=0.54, 95% CI [0.44, 0.66]).Conclusions:IOC is an independent factor that influences the survival of CRC patients. It improved the OS of patients with stages II and III CRC after radical surgery.Trial registration:chictr.org.cn, ChiCTR 2100043775.
Background: The aim of the present study was to evaluate the therapeutic effect of high-flow nasal cannula (HFNC) oxygen therapy on patients with aspiration pneumonia accompanied by respiratory failure in the post-stroke sequelae stage, with the goal of providing more effective oxygen therapy and improving patient prognosis.Methods: Retrospective analysis was conducted on 103 elderly patients with post-stroke aspiration pneumonia and moderate respiratory failure (oxygenation index: 100–200 mmHg) that had been admitted. The patients were divided into two groups according to the mode of oxygen therapy that was used: the Venturi mask group and the HFNC treatment group. The two groups were analyzed and compared in terms of the changes in the blood gas indices measured at different points in time (4, 8, 12, 24, 48, and 72 h), the proportion of patients that required transition to invasive auxiliary ventilation, and the 28-day mortality rate.Results: 103 patients were retrospectively analyzed; 16 cases were excluded, and 87 patients were included in the final patient group (42 in the HFNC group and 45 in the Venturi group). There was a statistically significant difference in the oxygenation indices of the HFNC group and the Venturi group (F = 546.811, P < 0.05). There was a statistically significant interaction between the monitored oxygenation indices and the mode of oxygen therapy (F = 70.961, P < 0.05), and there was a statistically significant difference in the oxygenation indices for the two modes of oxygen therapy (F = 256.977, P < 0.05). HFNC therapy contributed to the improvement of the oxygenation indices at a rate of 75.1%. The Venturi and HFNC groups also differed significantly in terms of the proportion of patients that required transition to invasive auxiliary ventilation within 72 h (P < 0.05). The HFNC group’s risk for invasive ventilation was 0.406 times that of the Venturi group (P < 0.05). There was no statistical difference in the 28-day mortality rate of the two groups (P > 0.05).Conclusion: HFNC could significantly improve the oxygenation state of patients with post-stroke aspiration pneumonia and respiratory failure, and it may reduce the incidence of invasive ventilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.