We analyze three‐dimensional GPS coordinate time series from continuously operating stations in Nepal and South Tibet and calculate the initial 1 year postseismic displacements. We first investigate models of poroelastic rebound, afterslip, and viscoelastic relaxation individually and then attempt to resolve the trade‐offs between their contributions by evaluating the misfit between observed and simulated displacements. We compare kinematic inversions for distributed afterslip with stress‐driven afterslip models. The modeling results show that no single mechanism satisfactorily explains near‐ and far‐field postseismic deformation following the Gorkha earthquake. When considering contributions from all three mechanisms, we favor a combination of viscoelastic relaxation and afterslip alone, as poroelastic rebound always worsens the misfit. The combined model does not improve the data misfit significantly, but the inverted afterslip distribution is more physically plausible. The inverted afterslip favors slip within the brittle‐ductile transition zone downdip of the coseismic rupture and fills the small gap between the mainshock and largest aftershock slip zone, releasing only 7% of the coseismic moment. Our preferred model also illuminates the laterally heterogeneous rheological structure between India and the South Tibet. The transient and steady state viscosities of the upper mantle beneath Tibet are constrained to be greater than 1018 Pa s and 1019 Pa s, whereas the Indian upper mantle has a high viscosity ≥1020 Pa s. The viscosity in the lower crust of southern Tibet shows a clear trade‐off with its southward extent and thickness, suggesting an upper bound value of ~8 × 1019 Pa s for its steady state viscosity.
[1] Changbaishan volcano in northeast China, previously dated to have erupted around the mid-10th century A.D., is renowned for producing one of the largest eruptions in history (magnitude 6.8) and thus speculated to have substantial climatic impact. Here we report a new high-precision 14 C wiggle-match age of A.D. 946 AE 3 obtained from a 264 year old tree trunk (with bark) killed during the eruption, using the OxCal's Bayesian modeling approach with 27 sequentially sampled annual rings of decadal intervals. The new chronology conforms well to the calendar date of A.D. 946 for the eruption inferred from historical documentary evidence. We find no stratospherically loaded sulfate spike that might be associated with the A.D. 946 eruption in the global volcanism record from the GISP2 ice core, suggesting the stratospheric sulfate aerosols produced during the eruption were not transported to the arctic region, due probably to its relatively low stratospheric sulfur emission and the seasonal effects of the atmospheric circulation at the time of the eruption that likely occurred in the winter of A.D. 946-947. Since the stratospheric volcanic sulfates are the main cause of large-scale climate perturbations, this finding indicates that the Millennium eruption of Changbaishan volcano might have limited regional climatic effects, rather than global or hemispheric impact as implied by its magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.