In this paper, we compare the performance of 8 PZT ceramics and one PMN-PT material for typical bending actuator applications. This includes the measurement of nonlinear transverse charge coefficient at high electric field strength and related quantities such as the Young's modulus, relative permittivity, coercive field and their temperature dependencies, and the Curie temperature. Most materials show much higher strains than what is expected from the datasheet values. We further study the operating region for fields against the polarization direction in different operating cycles and demonstrate a long-term stable quick re-poling method which increases the operating range of negative-only cycles from 50% of E c to 66% of E c .
Combining the specific advantages of high-resolution liquid-crystal-on-silicon spatial light modulators (LCoS-SLMs) and reflective or refractive micro-electro-mechanical systems (MEMS) presents new prospects for the generation of structured light fields. In particular, adaptive self-apodization schemes can significantly reduce diffraction by low-loss spatial filtering. The concept enables one to realize low-dispersion shaping of nondiffracting femtosecond wavepackets and to temporally switch, modulate or deflect spatially structured beams. Adaptive diffraction management by structured illumination is demonstrated for piezo-based and thermally actuated axicons, spiral phase plates (SPPs) and Fresnel bi-mirrors. Improved non-collinear autocorrelation with angular-tunable Fresnel-bi-mirrors via self-apodized illumination and phase contrast of an SLM is proposed. An extension of the recently introduced nondiffractive Talbot effect to a tunable configuration by combining an SLM and a fluid lens is reported. Experimental results for hexagonal as well as orthogonal array beams are presented.
In this paper we present and verify the non-linear simulation of an aspherical adaptive lens based on a piezo-glass sandwich membrane with combined bending and buckling actuation. To predict the full non-linear piezoelectric behavior, we measured the non-linear charge coefficient, hysteresis and creep effects of the piezo material and inserted them into the FEM model using a virtual electric field. We further included and discussed the fabrication parameters -glue layers and thermal stress -and their variations. To verify our simulations, we fabricated and measured a set of lenses with different geometries, where we found good agreement and show that their qualitative behavior is also well described by a simple analytical model. We finally discuss the effects of the geometry on the electric response and find, e.g., an increased focal power range from ±4.5 to ±9 m −1 when changing the aperture from 14 to 10 mm.
We present a novel, to the best of our knowledge, fabrication process for highly aspherical lenses based on surface deformation due to thermal expansion of a soft polymer, polydimethylsiloxane (PDMS), using laser-structuring, molding, and precise shape optimization. Our fabrication process can be used for almost any lens shape with a large degree of freedom—both individual lenses and dense arrays. We present the design, fabrication, and characterization with examples of four different lenses with 1 mm apertures and surface deviations below 100 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.