Vapor movement is often an important part in the total water flux in the vadose zone of arid or semiarid regions because the soil moisture is relatively low. The two major objectives of this study were to develop a numerical model in the HYDRUS‐1D code that (i) solves the coupled equations governing liquid water, water vapor, and heat transport, together with the surface water and energy balance, and (ii) provides flexibility in accommodating various types of meteorological information to solve the surface energy balance. The code considers the movement of liquid water and water vapor in the subsurface to be driven by both pressure head and temperature gradients. The heat transport module considers movement of soil heat by conduction, convection of sensible heat by liquid water flow, transfer of latent heat by diffusion of water vapor, and transfer of sensible heat by diffusion of water vapor. The modifications allow a very flexible way of using various types of meteorological information at the soil–atmosphere interface for evaluating the surface water and energy balance. The coupled model was evaluated using field soil temperature and water content data collected at a field site. We demonstrate the use of standard daily meteorological variables in generating diurnal changes in these variables and their subsequent use for calculating continuous changes in water contents and temperatures in the soil profile. Simulated temperatures and water contents were in good agreement with measured values. Analyses of the distributions of the liquid and vapor fluxes vs. depth showed that soil water dynamics are strongly associated with the soil temperature regime.
The contrast between the point-scale nature of current ground-based soil moisture instrumentation and the ground resolution (typically >10 2 km 2) of satellites used to retrieve soil moisture poses a significant challenge for the validation of data products from current and upcoming soil moisture satellite missions. Given typical levels of observed spatial variability in soil moisture fields, this mismatch confounds mission validation goals by introducing significant sampling uncertainty in footprint-scale soil moisture estimates obtained from sparse ground-based observations. During validation activities based on comparisons between ground observations and satellite retrievals, this sampling error can be misattributed to retrieval uncertainty and spuriously degrade the perceived accuracy of satellite soil moisture products. This review paper describes the magnitude of the soil moisture upscaling problem and measurement density requirements for ground-based soil moisture networks. Since many large-scale networks do not meet these requirements, it also summarizes a number of existing soil moisture upscaling strategies which may reduce the detrimental impact of spatial sampling errors on the reliability of satellite soil moisture validation using spatially sparse ground-based observations. © 2012 by the American Geophysical Union
Earth System Models (ESMs) are essential tools for understanding and predicting global change, but they cannot explicitly resolve hillslope-scale terrain structures that fundamentally organize water, energy, and biogeochemical stores and fluxes at subgrid scales. Here we bring together hydrologists, Critical Zone scientists, and ESM developers, to explore how hillslope structures may modulate ESM grid-level water, energy, and biogeochemical fluxes. In contrast to the one-dimensional (1-D), 2-to 3-m deep, and free-draining soil hydrology in most ESM land models, we hypothesize that 3-D, lateral ridge-to-valley flow through shallow and deep paths and insolation contrasts between sunny and shady slopes are the top two globally quantifiable organizers of water and energy (and vegetation) within an ESM grid cell. We hypothesize that these two processes are likely to impact ESM predictions where (and when) water and/or energy are limiting. We further hypothesize that, if implemented in ESM land models, these processes will increase simulated continental water storage and residence time, buffering terrestrial ecosystems against seasonal and interannual droughts. We explore efficient ways to capture these mechanisms in ESMs and identify critical knowledge gaps preventing us from scaling up hillslope to global processes. One such gap is our extremely limited knowledge of the subsurface, where water is stored (supporting vegetation) and released to stream baseflow (supporting aquatic ecosystems). We conclude with a set of organizing
Key Points:• ECOSTRESS is a state-of-the-art combination of thermal bands, spatial and temporal resolutions, and measurement accuracy and precision • Data from 82 eddy covariance sites were coalesced concurrently with the first year of ECOSTRESS for Stage 1 validation • Clear-sky ET from ECOSTRESS compared well against a wide range of eddy Abstract The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) was launched to the International Space Station on 29 June 2018 by the National Aeronautics and Space Administration (NASA). The primary science focus of ECOSTRESS is centered on evapotranspiration (ET), which is produced as Level-3 (L3) latent heat flux (LE) data products. These data are generated from the Level-2 land surface temperature and emissivity product (L2_LSTE), in conjunction with ancillary surface and atmospheric data. Here, we provide the first validation (Stage 1, preliminary) of the global ECOSTRESS clear-sky ET product (L3_ET_PT-JPL, Version 6.0) against LE measurements at 82 eddy covariance sites around the world. Overall, the ECOSTRESS ET product performs well against the site measurements (clear-sky instantaneous/time of overpass: r 2 = 0.88; overall bias = 8%; normalized root-mean-square error, RMSE = 6%). ET uncertainty was generally consistent across climate zones, biome types, and times of day (ECOSTRESS samples the diurnal cycle), though temperate sites are overrepresented. The 70-m-high spatial resolution of ECOSTRESS improved correlations by 85%, and RMSE by 62%, relative to 1-km pixels. This paper serves as a reference for the ECOSTRESS L3 ET accuracy and Stage 1 validation status for subsequent science that follows using these data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.