The solidification structure of Ti-6Al-4V round ingot during the electron beam cold hearth melting (EBCHM) directly determines the quality of the ingot and the performance of the subsequent rolled coil. In this paper, the Cellular Automaton Finite Element (CAFE) method is used to numerically simulate the solidification structure of Ti-6Al-4V ingot. Firstly, the mathematical model is established with a numerical solution. Secondly, effects of process parameters including the pouring temperature and pulling speed on the solidification structure are revealed. The results show that the microstructures predicted by the numerical method match the experimental results. For the case of fixed pulling speed, a reduction in the pouring temperature leads to the grain refinement and the decreased volatilization of Al. With an increase of the pulling speed, the number of grains first increases and then decreases, but the average grain size first decreases and then increases. Furthermore, the maximum grain size monotonically increases with increasing the pulling speed. Thus, the fine solidified structure with fine grains can be obtained at the pouring temperature of 1700 °C and the pulling speed of 4 × 10−4 m s−1.
The phase field model is established for the eutectic growth system in this paper, and the finite difference method is used to solve the model. The evolution of tilted eutectic interface morphology under isothermal solidification and directional solidification conditions, respectively, was investigated. The effects of solid-solid interface anisotropy, solid-liquid interface anisotropy, eutectic spacing and pulling speed on the evolution of the tilted eutectic structure were simulated to reveal the growth mechanism of the tilted eutectic structure. It is found that under isotropic and directional solidification conditions, eutectic growth is influenced by both of the direction of heat flow and the solid-liquid interface anisotropy. When the solid-solid interface anisotropy is small, the direction of heat flow dominates the growth direction of eutectic structure, and as the solid-solid interface anisotropy increases, the growth direction of eutectic structure starts to tilt. Two kinds of instability phenomena, bifurcation or merger and fault line, are also found in the eutectic growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.