With high-throughput screening, substituted dibenzo[c,f][2,7]naphthyridine 1 was identified as a novel potent and selective phosphoinositide-dependent kinase-1 (PDK-1) inhibitor. Various regions of the lead molecule were explored to understand the SAR requirement for this scaffold. The crystal structure of 1 with kinase domain of PDK-1 confirmed the binding in the active site. The key interaction of the molecule with the active site residues, observed SAR, and the biological profile are discussed in detail.
Epstein-Barr virus (EBV) is a well-known human herpesvirus associated with virtually all nasopharyngeal carcinoma (NPC) and ∼10% of gastric cancer (GC) worldwide. Increasing evidence shows that acquired genetic and epigenetic alterations lead to the initiation and progression of NPC and GC. However, even deep whole exome sequencing studies showed a relatively low frequency of gene mutations in NPC and EBV-associated GC (EBVaGC), suggesting a predominant role of epigenetic abnormities, especially promoter CpG methylation, in the pathogenesis of NPC and EBVaGC. High frequencies of promoter methylation of tumor suppressor genes (TSGs) have been frequently reported in NPC and EBVaGC, with several EBV-induced methylated TSGs identified. Further characterization of the epigenomes (genome-wide CpG methylation profile—methylome) of NPC and EBVaGC shows that these EBV-associated tumors display a unique high CpG methylation epigenotype with more extensive gene methylation accumulation, indicating that EBV acts as a direct epigenetic driver for these cancers. Mechanistically, oncogenic modulation of cellular CpG methylation machinery, such as DNA methyltransferases (DNMTs), by EBV-encoded viral proteins accounts for the EBV-induced high CpG methylation epigenotype in NPC and EBVaGC. Thus, uncovering the EBV-associated unique epigenotype of NPC and EBVaGC would provide new insight into the molecular pathogenesis of these unique EBV-associated tumors and further help to develop pharmacologic strategies targeting cellular methylation machinery in these malignancies.
Background Colorectal cancer ( CRC ) is the third most commonly diagnosed cancer in males and the second in females worldwide in 2012. In the past 20 years, strong evidence suggests that cancer stem cells are the main culprit of cancer metastasis, chemotherapy resistance, and relapse. Methods To further understand the unique biological properties of cancer stem cells and uncover novel molecular targets to eradicate them, we first established a panel of patient‐derived xenograft ( PDX ) tumor models using tumors surgically removed from human colorectal cancer patients. We then isolated CRC cancer stem cells based on their ALDH activity using fluorescent‐activated cell sorting ( FACS ) and characterized their metabolic properties. Results Interestingly, we found that the CRC cancer stem cells (ie, CRC cells with higher ALDH activity, or ALDH +) express higher level of antioxidant genes and have lower level of reactive oxygen species ( ROS ) than non‐ CRC cancer stem cells (ie, CRC cells with lower ALDH activity, or ALDH−). The CRC cancer stem cells also possess more mitochondria mass and show higher mitochondrial activity. More intriguingly, we observed higher AMP ‐activated protein kinase ( AMPK ) activities in these CRC cancer stem cells. Inhibition of the AMPK activity using 2 AMPK inhibitors, Compound C and Iodotubercidin, preferentially induces cell death in CRC cancer stem cells. Conclusion We propose that AMPK inhibitors may help to eradicate the CRC cancer stem cells and prevent the relapse of CRC s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.