Kodamaea (Pichia) ohmeri was formerly considered a contaminant, but is now known to be a significant human pathogen that has been shown to cause fungemia, endocarditis, funguria, and peritonitis in immunocompromised patients. We report a case of fungemia caused by K. ohmeri in a 71-year-old man with cellulitis. The patient was sent to the emergency room due to leg edema, fever, and change of consciousness. During hospitalization, a series of examinations including blood cultures were performed. On hospital day 8, blood culture yielded a yeast colony. Fluconazole was given empirically, but had no effect. The pathogen was identified as K. ohmeri by Vitek YBC card, API 20C, sequencing of the 18S rRNA gene, and the D1/D2 domains of the 26S rRNA gene and the internally transcribed spacer (ITS) regions. Antifungal susceptibility testing was performed with the ATB-Fungus system, and a high minimum inhibitory concentration (level up to 64 mg/l) for fluconazole was found. Fluconazole was replaced with amphotericin B deoxylate, and the fever and cellulitis inflammation gradually subsided. The patient was discharged in a stable condition. This is the first case of K. ohmeri fungemia in Taiwan.
The combination of radiotherapy and immunotherapy improves the survival rate of patients with malignancies developed through escape from T-cell-mediated immune surveillance. Immune checkpoint inhibitors, such as anti-programmed cell death protein-ligand 1 (anti-PD-L1) antibody, are used to rescue exhausted T cells. Simultaneously, dendritic cells (DCs) which are antigen-presenting cells that can initiate T-cell activation, are used to induce a tumor-specific immune response. However, the synergistic antitumor efficacy of the aforementioned combinational immunotherapy with intratumoral injection of low-dose DCs has not been reported, and the underlying therapeutic mechanism requires further investigation. Herein, we present the special case of a psoriatic patient with cutaneous squamous cell carcinoma (cSCC) in the right inguinal region, these two diseases characterized by opposing contradiction, further complicating treatments and side-effect management efforts. To treat the intractable SCC without exaggerating psoriasis, we developed the triple-regimen therapy (TRT) with the intratumoral injection of low-dose autologous DCs and anti-PD-L1 combined with radiotherapy. The injected DCs were obtained simply through leukapheresis without prior G-CSF administration for mobilization nor tumor-antigen loading for expansion. The patient received three radiation doses (24, 18, and 18 Gy) combined with three intratumoral injections of anti-PD-L1 antibody (40, 60, and 120 mg) plus autologous DCs (80% of the DC subpopulation being CD16+ myeloid DC with approximate amounts of 7.3 × 104, 2.5 × 106, and 1.7 × 107) within 10 weeks. The efficacy of the TRT was encouraging in shrinking tumor mass with remarkable SUVmax reduction (approximately 42%) on FDG PET-Scan despite relatively low-dose DCs were available. The low-dose intratumoral immunotherapy induced mild cutaneous side effects as expected. The transcriptomes were compared between pre-TRT and post-TRT biopsies to analyze underlying mechanical pathways of the TRT protocol. Over 10 highly significantly enriched T-cell-related pathways (P <0.0001) were identified in post-TRT biopsies. In addition, the activation of both innate and adaptive immunity was significantly enriched in post-TRT peripheral blood samples. We develop the easily accessible TRT which produces both local anti-tumor T-cell responses and systemic antitumor immunity for treating cSCC patients, especially for those with autoimmune disease.
The pigment melanin is produced by melanocytes, is primarily responsible for skin color, and protects it against ultraviolet rays that can cause the destruction of genetic material within the keratinocytes. To elucidate the mechanisms of many diseases associated with melanocytes, such as melanoma and albinism, or burns with uneven pigment distribution, the disease model needs to be established first. In this study, we aimed to construct the melanocyte model from patients in a short period. Sandai virus vector containing 4 stemness genes (Oct4, Sox2, Klf4, c-Myc) was transfected into human adipose-derived stem cells to produce induced pluripotent stem cells (iPSCs). Immunofluorescence staining was used to confirm the expression of specific proteins for iPSCs, including Tra-1-60, Tra-1-81, Oct-4, Sox-2, and Nango. polymerase chain reaction results also showed that specific genes of iPSCs with the ability to cause the differentiation of cells into the 3 germ layers were expressed. In our in vivo experiments, iPSCs were subcutaneously injected into nude mice to induce teratoma formation for 2 months. The morphology of the 3 germ layers was confirmed by hematoxylin and eosin staining. Furthermore, melanocytes were purified by serial induction medium, and their presence was confirmed by flow cytometry and the expression of different markers for melanocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.