Background:To evaluate the possible association between paediatric head computed tomography (CT) examination and increased subsequent risk of malignancy and benign brain tumour.Methods:In the exposed cohort, 24 418 participants under 18 years of age, who underwent head CT examination between 1998 and 2006, were identified from the Taiwan National Health Insurance Research Database (NHIRD). Patients were followed up until a diagnosis of malignant disease or benign brain tumour, withdrawal from the National Health Insurance (NHI) system, or at the end of 2008.Results:The overall risk was not significantly different in the two cohorts (incidence rate=36.72 per 100 000 person-years in the exposed cohort, 28.48 per 100 000 person-years in the unexposed cohort, hazard ratio (HR)=1.29, 95% confidence interval (CI)=0.90–1.85). The risk of benign brain tumour was significantly higher in the exposed cohort than in the unexposed cohort (HR=2.97, 95% CI=1.49–5.93). The frequency of CT examination showed strong correlation with the subsequent overall risk of malignancy and benign brain tumour.Conclusions:We found that paediatric head CT examination was associated with an increased incidence of benign brain tumour. A large-scale study with longer follow-up is necessary to confirm this result.
Stem cell activity is subject to non-cell-autonomous regulation from the local microenvironment, or niche. In adaption to varying physiological conditions and the ever-changing external environment, the stem cell niche has evolved with multifunctionality that enables stem cells to detect these changes and to communicate with remote cells/tissues to tailor their activity for organismal needs. The cyclic growth of hair follicles is powered by hair follicle stem cells (HFSCs). Using HFSCs as a model, we categorize niche cells into 3 functional modules, including signaling, sensing and message-relaying. Signaling modules, such as dermal papilla cells, immune cells and adipocytes, regulate HFSC activity through short-range cell-cell contact or paracrine effects. Macrophages capacitate the HFSC niche to sense tissue injury and mechanical cues and adipocytes seem to modulate HFSC activity in response to systemic nutritional states. Sympathetic nerves implement the message-relaying function by transmitting external light signals through an ipRGC-SCN-sympathetic circuit to facilitate hair regeneration. Hair growth can be disrupted by niche pathology, e.g. dysfunction of dermal papilla cells in androgenetic alopecia and influx of auto-reacting T cells in alopecia areata and lichen planopilaris. Understanding the functions and pathological changes of the HFSC niche can provide new insight for the treatment of hair loss.
Purpose: Glycine N-methyltransferase (GNMT) affects genetic stability by regulating DNA methylation and interacting with environmental carcinogens. In a previous study, we showed that GNMT acts as a susceptibility gene for hepatocellular carcinoma. Here, we report on our efforts to characterize the haplotypes, loss of heterozygosity (LOH), and expression levels of the GNMT in prostate cancer. Experimental Design: Peripheral blood mononuclear cell DNA collected from 326 prostate cancer patients and 327 age-matched controls was used to determine GNMT haplotypes. Luciferase reporter constructs were used to compare the promoter activity of different GNMT haplotypes. GNMT LOH rates in tumorous specimens were investigated via a comparison with peripheral blood mononuclear cell genotypes. Immunohistochemical staining was used to analyze GNMT expression in tissue specimens collected from 5 normal individuals, 33 benign prostatic hyperplasia patients, and 45 prostate cancer patients. Results: Three major GNMT haplotypes were identified in 92% of the participants: A, 16GAs/ DEL/C (58%); B, 10GAs/INS/C (19.9%); and C, 10GAs/INS/T (14.5%). Haplotype C carriers had significantly lower risk for prostate cancer compared with individuals with haplotype A (odds ratio, 0.68; 95% confidence interval, 0.48-0.95). Results from a phenotypic analysis showed that haplotype C exhibited the highest promoter activity (P < 0.05, ANOVA test). In addition, 36.4% (8 of 22) of the prostatic tumor tissues had LOH of the GNMT gene. Immunohistochemical staining results showed abundant GNMTexpression in normal prostatic and benign prostatic hyperplasia tissues, whereas it was diminished in 82.2% (37 of 45) of the prostate cancer tissues. Conclusions: Our findings suggest that GNMT is a tumor susceptibility gene for prostate cancer.
Abstractβ-Blockers have been reported to exhibit potential anticancer effects in cancer cell lines and animal models. However, clinical studies have yielded inconsistent results regarding cancer outcomes and cancer risk when β-blockers were used. This study investigated the association between propranolol and cancer risk.Between January 1, 2000 and December 31, 2011, a patient cohort was extracted from the Longitudinal Health Insurance Database 2000, a subset of the Taiwan National Health Insurance Research Database. A propranolol cohort (propranolol usage >6 months) and nonpropranolol cohort were matched using a propensity score. Cox proportional hazard models were used to estimate the hazard ratio (HR) and 95% confidence intervals (CIs) of cancer associated with propranolol treatment.The study sample comprised 24,238 patients. After a 12-year follow-up period, the cumulative incidence for developing cancer was low in the propranolol cohort (HR: 0.75; 95% CI: 0.67–0.85; P < 0.001). Patients with propranolol treatment exhibited significantly lower risks of cancers in head and neck (HR: 0.58; 95% CI: 0.35–0.95), esophagus (HR: 0.35; 95% CI: 0.13–0.96), stomach (HR: 0.54; 95% CI: 0.30–0.98), colon (HR: 0.68; 95% CI: 0.49–0.93), and prostate cancers (HR: 0.52; 95% CI: 0.33–0.83). The protective effect of propranolol for head and neck, stomach, colon, and prostate cancers was most substantial when exposure duration exceeded 1000 days.This study supports the proposition that propranolol can reduce the risk of head and neck, esophagus, stomach, colon, and prostate cancers. Further prospective study is necessary to confirm these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.