This study utilized a mass-resolved detection of ClOOCl to determine its photodissociation cross section, which is the product of the absorption cross section and dissociation quantum yield. An effusive molecular beam of ClOOCl was generated and its photodissociation probability was determined through measuring the decrease in the ClOOCl beam intensity upon laser irradiation. By comparing with a reference molecule, the absolute cross sections of ClOOCl were obtained without knowing its absolute concentration. The determined cross section of ClOOCl at 248.4 nm is (8.85+/-0.42)x10(-18) cm(2) at 200 K, significantly larger than previously reported values. The temperature dependence of the cross section was investigated at 248.4 nm in the range of 160-260 K; only a very small and negative temperature effect was observed. Because 248.4 nm is very close to the peak of the UV absorption band of ClOOCl, this work provides a new calibration point for normalizing relative absorption spectra of ClOOCl. In this work, the photodissociation cross section at 266 nm and 200 K was also reported to be (4.13+/-0.21)x10(-18) cm(2).
Contamination of surface and drinking water due to the presence of Escherichia coli bacteria is a major cause of water-borne disease outbreak. To address unmet challenges for practical pathogen detection in contaminated samples, we report fabrication of thermally reduced graphene oxide-based field-effect transistor (rGO FET) passivated with an ultrathin layer of AlO for real-time detection of E. coli bacteria. The sensor could detect a single E. coli cell within 50 s in a 1 µL sample volume. The ultrathin layer of AlO acted as a barrier between rGO and potential interferents present in the sample. E. coli specific antibodies anchored on gold nanoparticles acted as probes for selective capture of E. coli. The high density of negative charge on the surface of E. coli cells strongly modulates the concentration of majority charge carriers in the rGO monolayer, thereby allowing real-time monitoring of E. coli concentration in a given sample. With a low detection limit of single cell, the FET sensor had a linear range of 1-100 CFU in 1 µL volume of sample (i.e., 10 to 10 CFU/ mL). The biosensor with good selectivity and rapid detection was further successfully demonstrated for E. coli sensing in river water. The rGO-based FET sensor provides a low cost and label-free approach, and can be mass produced for detection of a broad spectrum of pathogens in water or other liquid media.
DNA sequences that can form G-quadruplexes (G4s) are highly prevalent in the genome. However, the structures and functions of most G4-forming sequences in the genome are poorly understood. Therefore, the development of molecular probes for G4 recognition in biological samples, especially probes with long wavelength, are important for the basic research of G4s. Squaraines dyes exhibit sharp and intense absorption and strong emission in the red to NIR region, but very few of them have been reported as probes for the recognition of nucleic acids. Here we report the interactions of two squaraine dyes, STS and CSTS, with different kinds of DNA. The dicyanomethylene-functionalized squaraine dye, CSTS, exhibits strong interaction with the parallel G4s, but no interaction with other DNA. In aqueous conditions, this interaction causes the transformation of CSTS from H-aggregates to monomers, which results in decline and growth of the absorption spectra of both forms. The parallel G4s enhance the fluorescence of both STS and CSTS, but the fluorescence enhancement of CSTS is much higher than that of STS. CSTS is demonstrated to bind to G4s through end-stacking model on G-quartet surface. The high selectivity of CSTS to parallel G4s is attributed to its V-shaped rigid planar π scaffold. The high selectivity, very low background fluorescence, large absorption coefficient, and high fluorescence quantum yield make CSTS hold great promise as a long-wavelength probe for parallel G4 detection in biological samples or in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.