Body constitution classification is the basis and core content of traditional Chinese medicine constitution research. It is to extract the relevant laws from the complex constitution phenomenon and finally build the constitution classification system. Traditional identification methods have the disadvantages of inefficiency and low accuracy, for instance, questionnaires. This paper proposed a body constitution recognition algorithm based on deep convolutional neural network, which can classify individual constitution types according to face images. The proposed model first uses the convolutional neural network to extract the features of face image and then combines the extracted features with the color features. Finally, the fusion features are input to the Softmax classifier to get the classification result. Different comparison experiments show that the algorithm proposed in this paper can achieve the accuracy of 65.29% about the constitution classification. And its performance was accepted by Chinese medicine practitioners.
PurposeThis study combines automatic segmentation and manual fine-tuning with an early fusion method to provide efficient clinical auxiliary diagnostic efficiency for fungal keratitis.MethodsFirst, 423 high-quality anterior segment images of keratitis were collected in the Department of Ophthalmology of the Jiangxi Provincial People's Hospital (China). The images were divided into fungal keratitis and non-fungal keratitis by a senior ophthalmologist, and all images were divided randomly into training and testing sets at a ratio of 8:2. Then, two deep learning models were constructed for diagnosing fungal keratitis. Model 1 included a deep learning model composed of the DenseNet 121, mobienet_v2, and squeezentet1_0 models, the least absolute shrinkage and selection operator (LASSO) model, and the multi-layer perception (MLP) classifier. Model 2 included an automatic segmentation program and the deep learning model already described. Finally, the performance of Model 1 and Model 2 was compared.ResultsIn the testing set, the accuracy, sensitivity, specificity, F1-score, and the area under the receiver operating characteristic (ROC) curve (AUC) of Model 1 reached 77.65, 86.05, 76.19, 81.42%, and 0.839, respectively. For Model 2, accuracy improved by 6.87%, sensitivity by 4.43%, specificity by 9.52%, F1-score by 7.38%, and AUC by 0.086, respectively.ConclusionThe models in our study could provide efficient clinical auxiliary diagnostic efficiency for fungal keratitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.