We consider an agent who wants to liquidate an asset with unknown drift. The agent believes that the drift takes one of two given values and has initially an estimate for the probability of either of them. As time goes by, the agent observes the asset price and can therefore
update his beliefs about the probabilities for the drift distribution. We formulate an optimal stopping problem that describes the liquidation problem, and we demonstrate that the optimal strategy is to liquidate the first time the asset price falls below a certain time-dependent boundary. Moreover, this boundary is shown to be monotonically increasing, continuous and to satisfy a nonlinear integral equation.
This paper explores the impact of housing price appreciation on corporate total factor productivity (TFP) in Chinese A-share listed corporations. Results show that increasing real estate prices negatively affect corporate TFP. Meanwhile, we find that the deterring effect is especially significant for state-owned enterprises (SOEs), large corporations and manufacturing corporations. This research further provides suggestive evidence that managerial myopia may be one potential explanation for the crowding out effect of increasing housing prices. When home purchase is under restriction, however, the negative impact of rising housing prices on corporate TFP declines sharply. This study illustrates the efficiency cost of China's booming real estate market.
We study the optimal liquidation strategy of an asset with price process satisfying a jump diffusion model with unknown jump intensity. It is assumed that the intensity takes one of two given values, and we have an initial estimate for the probability of both of them. As time goes by, by observing the price fluctuations, we can thus update our beliefs about the probabilities for the intensity distribution. We formulate an optimal stopping problem describing the optimal liquidation problem. It is shown that the optimal strategy is to liquidate the first time the point process falls below (goes above) a certain time-dependent boundary.
We show that a necessary and sufficient condition for the explosion of implied volatility near expiry in exponential Lévy models is the existence of jumps towards the strike price in the underlying process. When such jumps do not exist, the implied volatility converges to the volatility of the Gaussian component of the underlying Lévy process as the time to maturity tends to zero. These results are proved by comparing the short-time asymptotics of the Black–Scholes price with explicit formulas for upper and lower bounds of option prices in exponential Lévy models.
We study de Finetti's optimal dividend problem, also known as the optimal harvesting problem, in the dual model. In this model, the firm value is affected both by continuous fluctuations and by upward directed jumps. We use a fixed point method to show that the solution of the optimal dividend problem with jumps can be obtained as the limit of a sequence of stochastic control problems for a diffusion. In each problem, the optimal dividend strategy is of barrier type, and the rate of convergence of the barrier and the corresponding value function is exponential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.