High-entropy materials (HEMs) including high-entropy alloys (HEAs) and high-entropy ceramics (HECs) at nanoscale have promising prospects in many fields, yet a robust synthesis strategy is lacking. Herein, we present a simple and general approach, laser scanning ablation (LSA), to synthesize a vast library of HEA and HEC nanoparticles (NPs) including alloys, sulfides, oxides, borides, nitrides, phosphides. The LSA method takes only 5 nanoseconds per pulse to ablate the corresponding NPs precursors at atmospheric temperature and pressure in alkanes. The ultra-rapid process ensures up to 9 dissimilar metallic elements combined uniformly regardless of their thermodynamic
The ability to passivate defects and modulate the interface energy-level alignment (IEA) is key to boost the performance of perovskite solar cells (PSCs). Herein, we report ar obust route that simultaneously allows defect passivation and reduced energy difference between perovskite and hole transport layer (HTL) via the judicious placement of polar chlorine-terminated silane molecules at the interface. Density functional theory (DFT) points to effective passivation of the halide vacancies on perovskite surface by the silane chlorine atoms.A ni ntegrated experimental and DFT study demonstrates that the dipole layer formed by the silane molecules decreases the perovskite work function, imparting an Ohmic character to the perovskite/HTL contact. The corresponding PSCs manifest anearly 20 %increase in power conversion efficiency over pristine devices and am arkedly enhanced device stability.A ss uch, the use of polar molecules to passivate defects and tailor the IEA in PSCs presents apromising platform to advance the performance of PSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.