In this letter, we investigated the behaviors of surface-and buffer-induced current collapse in AlGaN/GaN high-electron mobility transistors (HEMTs) using a soft-switched pulsed I-V measurement with different quiescent bias points. It is found that the surface-and buffer-related current collapse have different relationship with the gate and drain biases (V GS0, V DS0 ) during quiescent bias stress. The surface-induced current collapse in devices without passivation monotonically increases with the negative V GS0 , suggesting that an electron injection to the surface from gate leakage is the dominant mechanism and the Si 3 N 4 passivation could effectively eliminate such current collapse. The buffer-induced current collapse in devices with intentionally carbon-doped buffer layer exhibits a different relationship with V GS0 after surface passivation. The buffer-related current collapse shows a bell-shaped behavior with V GS0 , suggesting that a hot electron trapping in the buffer is the dominant mechanism. The soft-switched pulsed I-V measurement provides an effective method to distinguish between the surface-and buffer-related current collapse in group III-nitride HEMTs.
Human pluripotent stem cells (hPSCs) are a promising cell source with pluripotency and capacity to differentiate into all human somatic cell types. Designing simple and safe biomaterials with an innate ability to induce osteoblastic lineage from hPSCs is desirable to realize their clinical adoption in bone regenerative medicine. To address the issue, here we developed a fully defined synthetic peptides-decorated two-dimensional (2D) microenvironment via polydopamine (pDA) chemistry and subsequent carboxymethyl chitosan (CMC) grafting to enhance the culture and osteogenic potential of hPSCs in vitro. The hPSCs including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) were successfully cultured on the peptides-decorated surface without Matrigel and ECM protein coating and underwent promoted osteogenic differentiation in vitro, determined from the alkaline phosphate (ALP) activity, gene expression, and protein production as well as calcium deposit amount. It was found that directed osteogenic differentiation of hPSCs was achieved through a peptides-decorated niche. This chemically defined and safe 2D microenvironment, which facilitates proliferation and osteo-differentiation of hPSCs, not only helps to accelerate the translational perspectives of hPSCs but also provides tissue-specific functions such as directing stem cell differentiation commitment, having great potential in bone tissue engineering and opening new avenues for bone regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.