Under noisy environments, to achieve the robust performance of speaker recognition is still a challenging task. Motivated by the promising performance of multi-task training in a variety of image processing tasks, we explore the potential of multitask adversarial training for learning a noise-robust speaker embedding. In this paper, we present a novel framework that consists of three components: an encoder that extracts the noise-robust speaker embeddings; a classifier that classifies the speakers; a discriminator that discriminates the noise type of the speaker embeddings. Additionally , we propose a training strategy using the training accuracy as an indicator to stabilize the multi-class adversarial optimization process. We conduct our experiments on the English and Mandarin corpuses and the experimental results demonstrate that our proposed multi-task adversarial training method could greatly outperform the other methods without adversarial training in noisy environments. Furthermore, the experiments indicate that our method is also able to improve the speaker verification performance under the clean condition.
The number of sources present in a mixture is crucial information often assumed to be known or detected by source counting. The exiting methods for source counting in underdetermined blind speech separation (UBSS) suffer from the overlapping between sources with low W-disjoint orthogonality (WDO). To address this issue, we propose to fit the direction of arrival (DOA) histogram with multiple von-Mises density (VM) functions directly and form a sparse recovery problem, where all the source clusters and the sidelobes in the DOA histogram are fitted with VM functions of different spatial parameters. We also developed a formula to perform the source counting taking advantage of the values of the sparse source vector to reduce the influence of sidelobes. Experiments are carried out to evaluate the proposed source counting method and the results show that the proposed method outperforms two well-known baseline methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.