Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and typically has poor prognosis. Like most cancers, altered gene expression was always associated with the induction and maintenance of HCC. Here, we reported that the expression level of T-LAK cell-originated protein kinase (TOPK) is significantly up-regulated in human HCC samples and cell lines. The suppression of TOPK by short hairpin RNA in HCC cell line SMMC-7721 caused cell cycle arrest and reduced cell growth and colony formation ability. Moreover, the tumor formation ability of the TOPK-suppression cells was significantly impaired compared with the control cells in nude mice. In addition, the knockdown expression of TOPK reduced the AKT phosphorylation. Taken together, we unveiled a novel role of TOPK which acts as an important positive regulator in human HCC cell proliferation.
Tendon tissue connects muscle to bone and plays crucial roles in stress transfer. Tendon injury remains a significant clinical challenge due to its complicated biological structure and poor self-healing capacity. The treatments for tendon injury have advanced significantly with the development of technology, including the use of sophisticated biomaterials, bioactive growth factors, and numerous stem cells. Among these, biomaterials that the mimic extracellular matrix (ECM) of tendon tissue would provide a resembling microenvironment to improve efficacy in tendon repair and regeneration. In this review, we will begin with a description of the constituents and structural features of tendon tissue, followed by a focus on the available biomimetic scaffolds of natural or synthetic origin for tendon tissue engineering. Finally, we will discuss novel strategies and present challenges in tendon regeneration and repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.