Along the way initiated by Carleo and Troyer [1], we construct the neural-network quantum state of transverse-field Ising model(TFIM) by an unsupervised machine learning method. Such a wave function is a map from the spin-configuration space to the complex number field determined by an array of network parameters. To get the ground state of the system, values of the network parameters are calculated by a Stochastic Reconfiguration(SR) method. We provide for this SR method an understanding from action principle and information geometry aspects. With this quantum state, we calculate key observables of the system, the energy, correlation function, correlation length, magnetic moment and susceptibility. As innovations, we provide a high efficiency method and use it to calculate entanglement entropy (EE) of the system and get results consistent with previous work very well.
The performance of the existing speech enhancement algorithms is not ideal in low signal-to-noise ratio (SNR) non-stationary noise environments. In order to resolve this problem, a novel speech enhancement algorithm based on multi-feature and adaptive mask with deep learning is presented in this paper. First, we construct a new feature called multi-resolution auditory cepstral coefficient (MRACC). This feature which is extracted from four cochleagrams of different resolutions can capture the local information and spectrotemporal context and reduce the algorithm complexity. Second, an adaptive mask (AM) which can track noise change for speech enhancement is put forward. The AM can flexibly combine the advantages of an ideal binary mask (IBM) and an ideal ratio mask (IRM) with the change of SNR. Third, a deep neural network (DNN) architecture is used as a nonlinear function to estimate adaptive mask. And the first and second derivatives of MRACC and MRACC are used as the input of the DNN. Finally, the estimated AM is used to weight the noisy speech to achieve enhanced speech. Experimental results show that the proposed algorithm not only further improves speech quality and intelligibility, but also suppresses more noise than the contrast algorithms. In addition, the proposed algorithm has a lower complexity than the contrast algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.