Surface-enhanced Raman scattering from molecules adsorbed on TiO 2 nanoparticles has been observed. This is attributed to the dominant contribution of the TiO 2 -to-molecule charge-transfer mechanism. The chargetransfer process is largely dependent on the intrinsic nature of the adsorbed molecules and the surface properties of the semiconductor. Both the stronger electron attracting ability of groups para-to the mercapto group bonded with TiO 2 surface and the plentiful surface states of TiO 2 nanoparticles are favorable to TiO 2 -tomolecule charge-transfer and SERS for molecules adsorbed on TiO 2 .
Proteins are essential components of organisms and they participate in every process within cells. The key characteristic of proteins that allows their diverse functions is their ability to bind other molecules specifically and tightly. With the development of proteomics, exploring high-efficiency detection methods for large-scale proteins is increasingly important. In recent years, rapid development of surface-enhanced Raman scattering (SERS)-based biosensors leads to the SERS realm of applications from chemical analysis to nanostructure characterization and biomedical applications. For proteins, early studies focused on investigating SERS spectra of individual proteins, and the successful design of nanoparticle probes has promoted great progress of SERS-based immunoassays. In this review we outline the development of SERS-based methods for proteins with particular focus on our proposed protein-mediated SERS-active substrates and their applications in label-free and Raman dye-labeled protein detection.
We detected concentration-dependent surface-enhanced Raman scattering (SERS) spectra of several label-free proteins (lysozyme, ribonuclease B, avidin, catalase, and hemoglobin) for the first time in aqueous solutions. Acidified sulfate was used as an aggregation agent to induce high electromagnetic enhancement in SERS. Strong SERS spectra of simple and conjugated protein samples could easily be accessed after the pretreatment with the aggregation agent. The detection limits of the proposed method for lysozyme and catalase were as low as 5 microg/mL and 50 ng/mL, respectively. This detection protocol for label-free proteins has combined simplicity, sensitivity, and reproducibility and allows routine qualitative and relatively quantitative detections. Thus, it has great potential in practical high-throughput protein detections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.