SUMMARY
Kinase inhibitors have limited success in cancer treatment because tumors circumvent their action. Using a quantitative proteomics approach, we assessed kinome activity in response to MEK inhibition in triple negative breast cancer (TNBC) cells and genetically engineered mice (GEMMs). MEK inhibition caused acute ERK activity loss, resulting in rapid c-Myc degradation that induced expression and activation of several receptor tyrosine kinases (RTKs). RNAi knockdown of ERK or c-Myc mimicked RTK induction by MEK inhibitors, whereas prevention of proteasomal c-Myc degradation blocked kinome reprogramming. MEK inhibitor-induced RTK stimulation overcame MEK2 but not MEK1 inhibition, reactivating ERK and producing drug resistance. The C3Tag GEMM for TNBC similarly induced RTKs in response to MEK inhibition. The inhibitor-induced RTK profile suggested a kinase inhibitor combination therapy that produced GEMM tumor apoptosis and regression where single agents were ineffective. This approach defines mechanisms of drug resistance, allowing rational design of combination therapies for cancer.
Fibroblast growth factor 21 (FGF21), a recently identified member of the FGF superfamily, is mainly secreted from the liver and adipose tissues and plays an important role in improving metabolic syndrome and homeostasis. The aim of this study is to evaluate the role of FGF21 in alcoholic fatty liver disease (AFLD) and to determine if it has a therapeutic effect on AFLD. In this paper, we tested the effect of FGF21 on alcohol-induced liver injury in a murine model of chronic ethanol gavage and alcohol-treated HepG2 cells. Male KM mice received single dose of 5 g/kg ethanol gavage every day for 6 weeks, which induced significant fatty liver and liver injury. The alcohol-induced fatty liver cell model was achieved by adding ethanol into the medium of HepG2 cell cultures at a final concentration of 75 mM for 9 days. Results showed that treatment with recombinant FGF21 ameliorated alcoholic fatty liver and liver injury both in a murine model of chronic ethanol gavage and alcohol-treated HepG2 cells. In addition, FGF21 treatment down-regulated the hepatic expression of fatty acid synthetic key enzyme, activated hepatic AMPK-SIRT1 pathway and significantly down-regulated hepatic oxidative stress protein. Taken together, FGF21 corrects multiple metabolic parameters of AFLD in vitro and in vivo by activation of the AMPK-SIRT1 pathway.
SUMMARY
Chuvash polycythemia (CP) is a rare congenital form of polycythemia caused by homozygous R200W and H191D mutations in the von Hippel-Lindau (VHL) gene whose gene product is the principal negative regulator of hypoxia-inducible factor. However, the molecular mechanisms underlying some of the hallmark features of CP such as hypersensitivity to erythropoietin are unclear. Here, we show that VHL directly binds suppressor of cytokine signalling 1 (SOCS1) to form a heterodimeric E3 ligase that targets phosphorylated (p)JAK2 for ubiquitin-mediated destruction. In contrast, CP-associated VHL mutants have altered affinity for SOCS1 and fail to engage and degrade pJAK2. Systemic administration of a highly selective JAK2 inhibitor, TG101209, reverses the disease phenotype in vhlR200W/R200W knock-in mice, a model that faithfully recapitulates human CP. These results reveal VHL as a SOCS1-cooperative negative regulator of JAK2 and provide compelling biochemical and preclinical evidence for JAK2- targeted therapy in CP patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.