The shape memory alloy (SMA) actuator is widely used in aerospace, medical and robot fields because of its advantages of low driving voltage, large driving force, no noise and high-power–weight ratio. Therefore, it is of great significance to establish the theoretical model of the SMA actuator and analyze the driving characteristics of the SMA actuator. On the basis of summarizing the constitutive model of the shape memory alloy spring, the phase transformation dynamics model of SMA including the minor hysteresis loop is established using the Duhem model in this paper, and the theoretical models of the bias and differential SMA spring actuator are established. At the same time, a PID position controller including anti-saturation and anti-overheating functions is proposed to control the position of the SMA actuator. Finally, the position control simulation model of the SMA spring actuator is established and simulated. Simulation results show that the position of the SMA actuator can be well controlled by using the model and control method established in this paper.
Variable stiffness joints have been gradually applied in rehabilitation robots because of their intrinsic compliance and greater ability to adjust mechanical stiffness. This paper designs a variable stiffness joint for upper limb rehabilitation training. The joint adopts the variable stiffness principle based special curved surface. The trapezoidal lead screw in the variable stiffness module has a self-locking function, and the stiffness can be maintained without the continuous output torque of the motor. In the aspect of control, back propagation (BP) neural network PID control strategy is used to control the torque of variable stiffness joint. Experiments show that this control method can effectively improve the torque control performance of variable stiffness joints in the case of low stiffness, and the isotonic centripetal resistance training can be realized by using the joints and control methods designed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.