The intrusion detection models (IDMs) based on machine learning play a vital role in the security protection of the network environment, and, by learning the characteristics of the network traffic, these IDMs can divide the network traffic into normal behavior or attack behavior automatically. However, existing IDMs cannot solve the imbalance of traffic distribution, while ignoring the temporal relationship within traffic, which result in the reduction of the detection performance of the IDM and increase the false alarm rate, especially for low-frequency attacks. So, in this paper, we propose a new combined IDM called LA-GRU based on a novel imbalanced learning method and gated recurrent unit (GRU) neural network. In the proposed model, a modified local adaptive synthetic minority oversampling technique (LA-SMOTE) algorithm is provided to handle imbalanced traffic, and then the GRU neural network based on deep learning theory is used to implement the anomaly detection of traffic. The experimental results evaluated on the NSL-KDD dataset confirm that, compared with the existing state-of-the-art IDMs, the proposed model not only obtains excellent overall detection performance with a low false alarm rate but also more effectively solves the learning problem of imbalanced traffic distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.