The pathogenesis of Alzheimer's disease (AD), a type of neurodegenerative disease characterized by learning and memory impairment, is often associated with pathological features, such as amyloid-beta (Aβ) accumulation and insulin resistance. The transgenic mouse, APPswePS1dE9 (APP/PS1), is one of the most commonly used animal models in pathogenesis studies of AD. The purpose of this study is to investigate the sex differences between APP/PS1 mice in the pathogenesis of AD. The impairment of glucose and insulin tolerance was found to develop earlier in male APP/PS1 mice than in females. Plasma insulin levels were significantly decreased in male APP/PS1 mice, while total cholesterol levels in male APP/PS1 mice were higher than those in females. Triglyceride levels in male mice in both the wild-type (WT) and APP/PS1 groups were higher than in their female littermates. Soluble and insoluble Aβ levels in female APP/PS1 mouse brains were higher than those in males. And the learning and memorizing abilities of female APP/PS1 mice were poorer than those of males. Our results concluded that there were sex differences in Aβ formation, pancreatic islet function and insulin sensitivity between male and female APP/PS1 mice during the pathogenesis of AD.
Compromised immunosurveillance leads to chemotherapy resistance and disease relapse of hematological malignancies. Amino acid metabolism regulates immune responses and cancer; however, a druggable amino acid metabolite to enhance antitumor immunosurveillance and improve leukemia targeting‐therapy efficacy remains unexplored. Here, an L‐phenylalanine polymer, Metabolic Reprogramming Immunosurveillance Activation Nanomedicine (MRIAN), is invented to effectively target bone marrow (BM) and activate the immune surveillance in T‐cell acute lymphoblastic leukemia (T‐ALL) by inhibiting myeloid‐derived suppressor cells (MDSCs) in T‐ALL murine model. Stable‐isotope tracer and in vivo drug distribution experiments show that T‐ALL cells and MDSCs have enhanced cellular uptake of L‐phenylalanine and MRIANs than normal hematopoietic cells and progenitors. Therefore, MRIAN assembled Doxorubicin (MRIAN‐Dox) specifically targets T‐ALL cells and MDSCs but spare normal hematopoietic cells and hematopoietic stem and progenitor cells with enhanced leukemic elimination efficiency. Consequently, MRIAN‐Dox has reduced cardiotoxicity and myeloablation side effects in treating T‐ALL mice. Mechanistically, MRIAN degrades into L‐phenylalanine, which inhibits PKM2 activity and reduces ROS levels in MDSCs to disturb their immunosuppressive function and increase their differentiation toward normal myeloid cells. Overall, a novel amino acid metabolite nanomedicine is invented to treat T‐ALL through the combination of leukemic cell targeting and immunosurveillance stimulation.
Hepatocellular carcinoma (HCC) has a poor prognosis due to the rapid disease progression and early metastasis. The metabolism program determines the proliferation and metastasis of HCC; however, the metabolic approach to treat HCC remains uncovered. Here, by analyzing the liver cell single-cell sequencing data from HCC patients and healthy individuals, we found that 6-phosphogluconolactonase (PGLS), a cytosolic enzyme in the oxidative phase of the pentose phosphate pathway (PPP), expressing cells are associated with undifferentiated HCC subtypes. The Cancer Genome Atlas database showed that high PGLS expression was correlated with the poor prognosis in HCC patients. Knockdown or pharmaceutical inhibition of PGLS impaired the proliferation, migration, and invasion capacities of HCC cell lines, Hep3b and Huh7. Mechanistically, PGLS inhibition repressed the PPP, resulting in increased reactive oxygen species level that decreased proliferation and metastasis and increased apoptosis in HCC cells. Overall, our study showed that PGLS is a potential therapeutic target for HCC treatment through impacting the metabolic program in HCC cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.