The bromodomain (BRD) and extra-terminal domain (BET) protein family bind to acetylated histones on lysine residues and act as epigenetic readers. Recently, the role of this protein family in bone loss has been gaining attention. Earlier studies have reported that benzotriazepine (Bzt) derivatives could be effective inhibitors of BET proteins. In this study, using in silico tools we designed three Bzt analogs (W49, W51, and W52). By docking, molecular simulations, and chemiluminescent Alpha Screen binding assay, we show that the studied analogs were selective at inhibiting BRD4 when compared to BRD2. Furthermore, we tested the effectiveness of these analogs on osteoclast formation and function. Among the examined analogs, Bzt-W49 and Bzt-W52 were found to be the most potent inhibitors of osteoclastogenesis without cytotoxicity in murine RAW264.7 osteoclast progenitors. Both the compounds also inhibited osteoclast formation without affecting cell viability in human CD14+ monocytes. Moreover, owing to attenuated osteoclastogenesis, actin ring formation and bone resorptive function of osteoclasts were severely perturbed. In conclusion, these results suggest that the novel BRD4-selective Bzt analogs designed in this study could be explored further for developing therapeutics against bone loss diseases characterized by excessive osteoclast activity.
MMV390048 (1) is a clinical compound under investigation for antimalarial activity. A new synthetic route was developed which couples two aromatic fragments while forming the central pyridine ring over two steps. This sequence takes advantage of raw materials used in the existing etoricoxib supply chain and eliminates the need for palladium catalysts, which were projected to be major cost-drivers.
A phenotypic high-throughput screen allowed discovery of quinazolinone-2-carboxamide derivatives as a novel antimalarial scaffold. Structure−activity relationship studies led to identification of a potent inhibitor 19f, 95-fold more potent than the original hit compound, active against laboratory-resistant strains of malaria. Profiling of 19f suggested a fast in vitro killing profile. In vivo activity in a murine model of human malaria in a dose-dependent manner constitutes a concomitant benefit.
The Mizoroki–Heck reaction is considered as one of the most ingenious and widely used methods for constructing C–C bonds. This reaction mainly focuses on activated olefins (styrenes, acrylates, or vinyl ethers) and aryl/vinyl (pseudo) halides. In comparison, the studies on unactivated alkenes and alkyl electrophiles are far less due to the low reactivity, poor selectivity, as well as competitive β-H elimination. In the past years, a growing interest has thus been devoted and significant breakthroughs have been achieved in the employment of unactivated alkenes and alkyl electrophiles as the reaction components, and this type of coupling is called as Heck-type or Heck-like reaction, which distinguishes from the traditional Heck reaction. Herein, we give a brief summary on Heck-type reaction between unactivated alkenes and alkyl electrophlies, covering its initial work, recent advancements, and mechanistic discussions.1 Introduction2 Intramolecular Heck-Type Reaction of Unactivated Alkenes and Alkyl Electrophiles2.1 Cobalt-Catalyzed Intramolecular Heck-Type Reaction2.2 Palladium-Catalyzed Intramolecular Heck-Type Reaction2.3 Nickel-Catalyzed Intramolecular Heck-Type Reaction2.4 Photocatalysis and Multimetallic Protocol for Intramolecular Heck-Type Reaction3 Intermolecular Heck-Type Reaction of Unactivated Alkenes and Alkyl Electrophiles3.1 Electrophilic Trifluoromethylating Reagent as Reaction Partners3.2 Alkyl Electrophiles as Reaction Partners4 Oxidative Heck-Type Reaction of Unactivated Alkenes and Alkyl Radicals5 Conclusions and Outlook
An efficient method to prepare enantiopure (S)-glycidyl pivalate from (R)-epichlorohydrin and pivalic acid is reported. This work provides an alternative to the synthesis of this important building block from readily available and inexpensive materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.