This study investigates the impact of Ca and Sb elements on the corrosion resistance of E690 steel in a simulated marine environment. Electrochemical testing and dry/wet cyclic corrosion testing were conducted on prepared E690 steel specimens. The eroded specimens’ microstructure was observed under a scanning electron microscope, and the inclusion morphology was analyzed using an energy-dispersive spectrometer (EDS). The simulating liquid was designed to emulate the severe marine atmospheric environment in Xisha. Results showed that the addition of Ca and Sb elements effectively enhances the corrosion resistance of E690 steel in the simulated marine environment. The corrosion rates of E690 steel specimens with Ca and Sb additions were lower than those without, and the corrosion morphology was more uniform. These findings suggest that the addition of Ca and Sb elements can improve the corrosion resistance of E690 steel in simulated marine environments and have potential for use in marine engineering applications.
Ductile iron is a high-strength cast iron material. The spherical graphite obtained by inoculation treatment effectively improves the mechanical properties of cast iron, resulting in higher strength than carbon steel. However, severe corrosion may occur under specific circumstances, especially in thermal water pipelines. In this paper, the corrosion mechanisms at the main defective points of ductile iron were investigated using microscopic morphological characterization after accelerated tests combined with numerical simulations. The influence law of each environmental factor on the corrosion kinetics of ductile iron in a complex water quality environment was studied using dynamic potential polarization tests. The results showed that the main causative factors leading to the increased corrosion of ductile iron were the presence of tail-like gaps on its surface, and the crescent-shaped shrinkage and loosening organization around the graphite spheres. After mechanical treatment was applied to eliminate the obvious defects, the number of corrosion pits was reduced by 41.6%, and the depth of the pits was slowed down by 40% after five days. By comparison, after ten days, the number of pits was reduced by 51%, and the depth of the pits was slowed down by 50%. The dynamic potential polarization test results show that the dissolved oxygen concentration has the greatest influence on the corrosion of ductile iron in the simulated water environment; meanwhile, the water hardness can slow down the corrosion of ductile iron. The relative influence of each environmental factor is as follows: dissolved oxygen concentration > temperature > immersion time > water hardness > pH > Cl−.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.