Evidence indicates that long non-coding RNAs (lncRNAs) play a critical role in the regulation of tumor cellular processes, such as proliferation, apoptosis, and metastasis. LncRNA CRNDE (Colorectal Neoplasia Differentially Expressed) is located at human chromosome 16 and has been found overexpressed in a variety of cancers including colorectal cancer (CRC). In this paper, we report that lncRNA CRNDE expression was remarkably upregulated in CRC tissues and that lncRNA CRNDE overexpression was positively correlated with advanced pathological stages and larger tumor sizes. In addition, the knockdown of CRNDE significantly suppressed proliferation and caused apoptosis of CRC cells both in vitro and in vivo. Furthermore, RNA immunoprecipitation and chromatin immunoprecipitation assays demonstrated that lncRNA CRNDE could epigenetically suppress the expressions of dual-specificity phosphatase 5 (DUSP5) and CDKN1A by binding to EZH2 (the key components of Polycomb repressive complex 2 (PRC2)), thus promoting CRC development. In conclusion, our data suggest that the lncRNA CRNDE promotes the progression of CRC and is a potential therapeutic target for CRC intervention.
Long non-coding RNA (lncRNA) is emerging as an critical regulator in multiple cancers, including pancreatic cancer (PC). Recently, lncRNA SNHG15 was found to be up-regulated in gastric cancer and hepatocellular carcinoma, exerting oncogenic effects. Nevertheless, the biological function and regulatory mechanism of SNHG15 remain unclear in pancreatic cancer (PC). In this study, we reported that SNHG15 expression was also upregulated in PC tissues, and its overexpression was remarkably associated with tumor size, tumor node metastasis (TNM) stage and lymph node metastasis in patients with PC. SNHG15 knockdown inhibited proliferative capacities and suppressed apoptotic rate of PC cells in vitro, and impaired in-vivo tumorigenicity. Additionally, RNA immunoprecipitation (RIP) assays showed that SNHG15 epigenetically repressed the P15 and Kruppel-like factor 2 (KLF2) expression via binding to enhancer of zeste homolog 2 (EZH2), and chromatin immunoprecipitation assays (CHIP) assays demonstrated that EZH2 was capable of binding to promoter regions of P15 and KLF2 to induce histone H3 lysine 27 trimethylation (H3K27me3). Furthermore, rescue experiments indicated that SNHG15 oncogenic function partially involved P15 and KLF2 repression. Consistently, an inverse correlation between the expression of SNHG15 and traget genes were found in PC tissues. Our results reported that SNHG15 could act as an oncogene in PC, revealing its potential value as a biomarker for early detection and individualized therapy.
Recently, substantial evidence has demonstrated that long non-coding RNAs (lncRNAs) play critical roles in multiple cancers including colorectal cancer (CRC). Utilizing publicly available lncRNA-expression-profiling data from the Gene Expression Omnibus (GEO) dataset GSE21510, we screened SNHG17 as a new candidate lncRNA associated with CRC development and progression. We further demonstrated that SNHG17 was upregulated in CRC tissues, and that its overexpression was significantly correlated with tumor size, TNM stage, and lymph node metastasis in CRC patients. Moreover, SNHG17 knockdown significantly inhibited the proliferation of CRC cells, and induced cell cycle G1/G0 phase arrest and cell apoptosis. Consistent with these findings, SNHG17 silencing inhibited tumor growth in vivo. Mechanistic studies revealed the capability of lncRNA SNHG17 to epigenetically suppress P57 by binding to enhancer of zeste homolog 2 (a key component of polycomb repressive complex 2) in CRC cells, and quantitative real-time polymerase chain reaction assays demonstrated that SNHG17 expression levels were inversely correlated with those of P57 in CRC tissues. Furthermore, rescue experiments confirmed that SNHG17 exerted oncogenic functions partly through regulating P57 expression. These findings represent the first reporting of the roles and mechanisms associated with SNHG17 in CRC progression, highlighting SNHG17 as a potential therapeutic target for CRC patients.
Long noncoding RNAs (lncRNAs) have been reported to be involved in a variety of human diseases, including cancers. However, their mechanisms have not yet been fully elucidated. We investigated lncRNA changes that may be associated with pancreatic cancer (PC) by analyzing published microarray data, and identified AGAP2-AS1 as a relatively overexpressed lncRNA in PC tissues. qRT-PCR assays were performed to examine expression levels of AGAP2-AS1. MTT assays, colony formation assays, and EdU assays were used to determine the proliferative capacity of cells. Flow cytometry and TUNEL assays were used to study the regulation of AGAP2-AS1 in the cell cycle and apoptosis. Transwell experiments were used to study changes in cell invasion and metastasis, and a nude mouse model was established to assess the effects of AGAP2-AS1 on tumorigenesis in vivo. RNA sequencing was performed to probe AGAP2-AS1-related pathways. Subcellular fractionation and FISH assays were used to determine the distribution of AGAP2-AS1 in PC cells, and RIP and ChIP were used to determine the molecular mechanism of AGAP2-AS1-mediated regulation of potential target genes. Increased expression of AGAP2-AS1 was associated with tumor size and pathological stage progression in patients with PC. RREB1 was found to activate transcription of AGAP2-AS1 in PC cells. AGAP2-AS1 affected proliferation, apoptosis, cycle arrest, invasion, and metastasis of PC cells in vitro, and AGAP2-AS1 regulated PC proliferation in vivo. Furthermore, AGAP2-AS1 epigenetically inhibited the expression of ANKRD1 and ANGPTL4 by recruiting zeste homolog 2 (EZH2), thereby promoting PC proliferation and metastasis. In summary, our data show that RREB1-induced upregulation of AGAP2-AS1 regulates cell proliferation and migration in PC partly through suppressing ANKRD1 and ANGPTL4 by recruiting EZH2. AGAP2-AS1 represents a potential target for the diagnosis and treatment of PC in the future.
Recently, single-cell RNA sequencing has enabled specific analysis of cell populations in highly complex www.aging-us.com
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.