A bifunctional graphene catalyst with abundant topological defects is achieved via the carbonization of natural gelatinized sticky rice to probe the underlying oxygen electrocatalytic mechanism. A nitrogen-free configuration with adjacent pentagon and heptagon carbon rings is revealed to exhibit the lowest overpotential for both oxygen reduction and evolution catalysis. The versatile synthetic strategy and novel insights on the activity origin facilitate the development of advanced metal-free carbocatalysts for a wide range of electrocatalytic applications.
The emergence of van der Waals (vdW) heterostructures of 2D materials has opened new avenues for fundamental scientific research and technological applications. However, the current concepts and strategies of material engineering lack feasibilities to comprehensively regulate the as-obtained extrinsic physicochemical characters together with intrinsic properties and activities for optimal performances. A 3D mesoporous vdW heterostructure of graphene and nitrogen-doped MoS via a two-step sequential chemical vapor deposition method is constructed. Such strategy is demonstrated to offer an all-round engineering of 2D materials including the morphology, edge, defect, interface, and electronic structure, thereby leading to robustly modified properties and greatly enhanced electrochemical activities. The hydrogen evolution is substantially accelerated on MoS , while the oxygen reduction and evolution are significantly improved on graphene. This work provides a powerful overall engineering strategy of 2D materials for electrocatalysis, which is also enlightening for other nanomaterials and energy-related applications.
Supported gold catalysts play a crucial role in the chemical industry; however, their poor on-stream stability because of the sintering of the gold nanoparticles restricts their practical application. The strong metal-support interaction (SMSI), an important concept in heterogeneous catalysis, may be applied to construct the structure of catalysts and, hence, improve their reactivity and stability. Here we report an ultrastable Au nanocatalyst after calcination at 800 °C, in which Au nanoparticles are encapsulated by a permeable TiOx thin layer induced by melamine under oxidative atmosphere. Owning to the formed TiOx overlayer, the resulting Au catalyst is resistant to sintering and exhibits excellent activity and stability for catalytic CO oxidation. Furthermore, this special strategy can be extended to colloidal Au nanoparticles supported on TiO2 and commercial gold catalyst denoted as RR2Ti, providing a universal way to engineer and develop highly stable supported Au catalysts with tunable activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.