Aims Chronic heart failure (CHF) has an increasing burden of comorbidities, which affect clinical outcomes. Few studies have focused on the clustering and hierarchical management of patients with CHF based on comorbidity. This study aimed to explore the cluster model of CHF patients based on comorbidities and to verify their relationship with clinical outcomes. Methods and results Electronic health records of patients hospitalized with CHF from January 2014 to April 2019 were collected, and 12 common comorbidities were included in the latent class analysis. The Fruchterman–Reingold layout was used to draw the comorbidity network, and analysis of variance was used to compare the weighted degrees among them. The incidence of clinical outcomes among different clusters was presented on Kaplan–Meier curves and compared using the log‐rank test, and the hazard ratio was calculated using the Cox proportional risk model. Sensitivity analysis was performed according to the left ventricular ejection fraction. Four different clinical clusters from 4063 total patients were identified: metabolic, ischaemic, high comorbidity burden, and elderly‐atrial fibrillation. Compared with the metabolic cluster, patients in the high comorbidity burden cluster had the highest adjusted risk of combined outcome and all‐cause mortality {1.67 [95% confidence interval (CI), 1.40–1.99] and 2.87 [95% CI, 2.17–3.81], respectively}, followed by the elderly‐atrial fibrillation and ischaemic clusters. The adjusted readmission risk of patients with ischaemic, high comorbidity burden, and elderly‐atrial fibrillation clusters were 1.35 (95% CI, 1.08–1.68), 1.39 (95% CI, 1.13–1.72), and 1.42 (95% CI, 1.14–1.77), respectively. The comorbidity network analysis found that patients in the high comorbidity burden cluster had more and higher comorbidity correlations than those in other clusters. Sensitivity analysis revealed that patients in the high comorbidity burden cluster had the highest risk of combined outcome and all‐cause mortality (P < 0.05). Conclusions The difference in adverse outcomes among clusters confirmed the heterogeneity of CHF and the importance of hierarchical management. This study can provide a basis for personalized treatment and management of patients with CHF, and provide a new perspective for clinical decision making.
Objective: To explore the application of the Cox model based on extreme learning machine in the survival analysis of patients with chronic heart failure.Methods: The medical records of 5,279 inpatients diagnosed with chronic heart failure in two grade 3 and first-class hospitals in Taiyuan from 2014 to 2019 were collected; with death as the outcome and after the feature selection, the Lasso Cox, random survival forest (RSF), and the Cox model based on extreme learning machine (ELM Cox) were constructed for survival analysis and prediction; the prediction performance of the three models was explored based on simulated data with three censoring ratios of 25, 50, and 75%.Results: Simulation results showed that the prediction performance of the three models decreased with increasing censoring proportion, and the ELM Cox model performed best overall; the ELM Cox model constructed with 21 highly influential survival predictors screened from actual chronic heart failure data showed the best performance with C-index and Integrated Brier Score (IBS) of 0.775(0.755, 0.802) and 0.166(0.150, 0.182), respectively.Conclusion: The ELM Cox model showed good discrimination performance in the survival analysis of patients with chronic heart failure; it performs consistently for data with a high proportion of censored survival time; therefore, the model could help physicians identify patients at high risk of poor prognosis and target therapeutic measures to patients as early as possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.