The therapeutic use of curcumin and chemically modified curcumin (CMC) for suppressing melanogenesis and tyrosinase activity have been recognized. J147 is a modified version of curcumin with superior bioavailability and stability. However, there is no report about the effects of J147 on pigmentation in vitro and in vivo. In our studies, we investigated the hypopigmentary effects of J147 treatment on melanocytes and explored the underlying mechanism. The present studies suggested that J147 suppressed both basal and α-MSH-induced melanogenesis, as well as decreased melanocyte dendricity extension and melanosome transport. J147 played these roles mainly by activating the extracellular signal-regulated protein kinase (ERK) pathway. Once activated, it resulted in MITF degradation and further down-regulated the expression of tyrosinase, TRP-1, TRP-2, Myosin Va, Rab27a and Cdc42, ultimately inhibited melanin synthesis and melanosome transport. Furthermore, the hypopigmentary effects of J147 were demonstrated in vivo in a zebrafish model and UVB-induced hyperpigmentation model in brown guinea pigs. Our findings also suggested that J147 exhibited no cytotoxicity in vitro and in vivo. Taken together, these data confirmed that J147 may prove quite useful as a safer natural skin-whitening agent.
In CO 2 -enhanced coalbed methane (CO 2 -ECBM) engineering, accurate knowledge of the interaction mechanism of CO 2 and coal matrix is crucial for improving the recovery of CH 4 and contributing to the geological sequestration of CO 2 . This study is performed to prove the accuracy of molecular simulation and calculate the variation characteristics of pore structure, volumetric strain, mechanical properties, Fourier transform infrared (FT-IR) spectra, and the system free energy by molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) methods. According to the obtained results, a relationship between pore structure, swelling strain, mechanical properties, chemical structure, and surface free energy was established. Then, the correlation of various coal change characteristics was analyzed to elucidate the interaction mechanism between CO 2 and coal. The results showed that (1) the molecular simulation method was able to estimate the swelling mechanism of CO 2 and coal. However, because the adsorption capacity of the molecular simulate is greater than that of the experiment and the raw coal is softer than the macromolecular structure, the molecular results are slightly better than the experimental results. (2) As pressure increased from 0 to 4 MPa, the intramolecular pores and sorption-induced strain changed significantly, whereas when the pressure increased from 4 to 8 MPa (especially at 6–8 Mpa), there was an increase of the intermolecular pores and mechanical properties and transition from elastic to plastic. In addition, when the pressure was >8 MPa, the coal matrix changed slightly. ScCO 2 with a higher adsorption capacity results in greater damage and causes larger alterations of coal mechanical properties. (3) The change of the coal matrix is essentially controlled by the surface free energy of the molecular system. E valence affects the aromatic structure and changes the volume of the intramolecular pores, thus affecting the sorption-induced strain change rate. E non affects the length of side chains and the disorder degree of coal molecules and changes the volume of the intramolecular pores, thus affecting the mechanical property change rate. Our findings shed light on the dynamic process of coal swelling and provide a theoretical basis for CO 2 enhancing the recovery of CH 4 gas in coal.
Bituminous coal reservoirs exhibit pronounced heterogeneity, which significantly impedes the production capacity of coalbed methane. Therefore, obtaining a thorough comprehension of the pore characteristics of bituminous coal reservoirs is essential for understanding the dynamic interaction between gas and coal, as well as ensuring the safety and efficiency of coal mine production. In this study, we conducted a comprehensive analysis of the pore structure and surface roughness of six bituminous coal samples (1.19% < Ro,max < 2.55%) using various atomic force microscopy (AFM) techniques. Firstly, we compared the microscopic morphology obtained through low-pressure nitrogen gas adsorption (LP-N2-GA) and AFM. It was observed that LP-N2-GA provides a comprehensive depiction of various pore structures, whereas AFM only allows the observation of V-shaped and wedge-shaped pores. Subsequently, the pore structure analysis of the coal samples was performed using Threshold and Chen’s algorithms at ×200 and ×4000 magnifications. Our findings indicate that Chen’s algorithm enables the observation of a greater number of pores compared to the Threshold algorithm. Moreover, the porosity obtained through the 3D algorithm is more accurate and closely aligns with the results from LP-N2-GA analysis. Regarding the effect of magnification, it was found that ×4000 magnification yielded a higher number of pores compared to ×200 magnification. The roughness values (Rq and Ra) obtained at ×200 magnification were 5–14 times greater than those at ×4000 magnification. Interestingly, despite the differences in magnification, the difference in porosity between ×200 and ×4000 was not significant. Furthermore, when comparing the results with the HP-CH4-GA experiment, it was observed that an increase in Ra and Rq values positively influenced gas adsorption, while an increase in Rsk and Rku values had an unfavorable effect on gas adsorption. This suggests that surface roughness plays a crucial role in gas adsorption behavior. Overall, the findings highlight the significant influence of different methods on the evaluation of pore structure. The 3D algorithm and ×4000 magnification provide a more accurate description of the pore structure. Additionally, the variation in 3D surface roughness was found to be related to coal rank and had a notable effect on gas adsorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.