Clean and renewable energy is the only way to achieve sustainable energy development, with considerable social and economic benefits. As a key technology for clean and renewable energy, it is very important to research the reliability optimization of microgrids. This paper reviews the research progress in microgrid reliability optimization. This paper first classifies and summarizes the existing research on microgrid control strategies and reliability assessment. Then, the system reliability optimization framework is summarized in terms of both microgrid systems and optimization objectives. Next, we summarize the most commonly used optimization algorithms for microgrid reliability for different microgrid systems. Finally, we provide a bibliometric analysis of the literature on the reliability research of microgrids. In addition, we propose some research challenges in the future for the reliability of microgrids.
With the development of science and technology, the structure of engineering system has become increasingly large and complex. In order to ensure the safety and stability of the system in operation, the reliability evaluation of complex system has become an important research field. Based on the actual engineering system, this paper proposes a multi-state system with multi-level performance sharing mechanism. On this basis, we established a system reliability evaluation model using universal generating function technique. Through numerical examples, the application of the model and analyze the influence of different parameters on system reliability are demonstrated. In addition, we also use genetic algorithm to optimize the allocation of components in the system, so as to improve the reliability of the system. Different from the previous studies on system reliability with common bus performance sharing, the system proposed in this study is more general.
Mosquito control is very important, in particular, for tropical countries. The purpose of mosquito control is to decrease the number of mosquitos such that the mosquitos transmitted diseases can be reduced. However, mosquito control can be costly, thus there is a trade-off between the cost for mosquito control and the cost for mosquitos transmitted diseases. A model is proposed based on renewal theory in this paper to describe the process of mosquitos’ growth, with consideration of the mosquitos transmitted diseases growth process and the corresponding diseases treatment cost. Through this model, the total mosquitos control cost of different strategies can be estimated. The optimal mosquito control strategy that minimizes the expected total cost is studied. A numerical example and corresponding sensitivity analyses are proposed to illustrate the applications.
Most factory production processes are completed by machines and workers on production lines. The operation schedule is arranged to reduce the cost of the enterprises to obtain the maximum economic profit for sustainable running. Previous studies usually investigated the working time while only considering the workers’ conditions. This study proposed a method to optimize the operation schedule by jointly considering the workers’ fatigue states and the operation states of machines. This method was proposed based on a system structure called the multistate consecutively connected system (MCCS), which has been widely applied in many areas, such as electronic communications. This structure is also an analogy of the production line. The corresponding model is constructed based on the universal generating function (UGF) since it is a powerful tool in modeling a consecutively connected system. The proposed model can be used to evaluate the different productivities of different types of workers in different states and to realize the screening of the whole scheme through simulation. According to the proposed method, we obtained the optimal operation schedule, including the working time, rest time and allocation strategy for a production line system. Some examples are provided to illustrate the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.