It is currently believed that the TBX1 gene is one of the core genes of congenital heart disease (CHD). However, there are few studies on the abnormal regulation of TBX1 gene expression. The purpose of this work was to investigate the role of miR-144 and TBX1 in cardiac development by studying the regulatory relationship and mechanism of miR-144 on TBX1/JAK2/STAT1 in cardiomyocytes. Cell proliferation was detected by MTT and clone formation assay and cell cycle and apoptosis by flow cytometry. The levels of miR-144 and TBX1 in H9c2 cells were assessed by qRT-PCR. Dual luciferase reporter assay was used to validate the direct targeting of TBX1 with miR-144. The protein expression levels of TBX1 and its downstream proteins were measured by Western blot analysis. miR-144 inhibited H9c2 cell proliferation by arresting cells in G1 phase. Furthermore, miR-144 induced H9c2 cell apoptosis and activated the JAK2/STAT1 signaling pathway. Bioinformatic predictions and luciferase reporter assay showed that miR-144 directly targets TBX1. Co-overexpression of miR-144 and TBX1 upregulated cell proliferation by accelerating G1 to S phase transition and downregulated cell apoptosis through inhibiting the JAK2/STAT1 signaling pathway. miR-144 acts as a proliferation inhibitor in cardiomyocytes via the TBX1/JAK2/STAT1 axis and is therefore a potential novel therapeutic target for CHD treatment.
Background Bartter syndrome (BS) is a rare autosomal recessive disorder of salt reabsorption at the thick ascending limb of the Henle loop, characterized by hypokalemia, salt loss, metabolic alkalosis, hyperreninemic hyperaldosteronism with normal blood pressure. BS type III, often known as classic BS (CBS), is caused by loss-of-function mutations in CLCNKB ( chloride voltage-gated channel Kb ) encoding basolateral ClC-Kb. Case presentation We reported a 15-year-old CBS patient with a compound heterozygous mutation of CLCNKB gene. She first presented with vomiting, hypokalemic metabolic alkalosis at the age of 4 months, and was clinically diagnosed as CBS. Indomethacin, spironolactone and oral potassium were started from then. During follow-up, the serum electrolyte levels were generally normal, but the patient showed failure to thrive and growth hormone (GH) deficiency was diagnosed. The recombinant human GH therapy was performed, and the growth velocity was improved. When she was 14, severe proteinuria and chronic kidney disease (CKD) were developed. Renal biopsy showed focal segmental glomerulosclerosis (FSGS) with juxtaglomerular apparatus cell hyperplasia, and genetic testing revealed a point deletion of c.1696delG (p. Glu566fs) and a fragment deletion of exon 2–3 deletions in CLCNKB gene. Apart from the CBS, ostium secundum atrial septal defect (ASD) was diagnosed by echocardiography. Conclusions This is the first report of this compound heterozygous of CLCNKB gene in BS Children. Our findings contribute to a growing list of CLCNKB mutations associated with CBS. Some recessive mutations can induce CBS in combination with other mutations.
Congenital heart disease (CHD) is the most common noninfectious cause of death during the neonatal stage. T-box transcription factor 1 (TBX1) is the main genetic determinant of 22q11.2 deletion syndrome (22q11.2DS), which is a common cause of CHD. Moreover, ferroptosis is a newly discovered kind of programmed cell death. In this study, the interaction among TBX1, miR-193a-3p, and TGF-β2 was tested using quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting, and dual-luciferase reporter assays. TBX1 silencing was found to promote TGF-β2 messenger ribonucleic acid (mRNA) and protein expression by downregulating the miR-193a-3p levels in H9c2 cells. In addition, the TBX1/miR-193a-3p/TGF-β2 axis was found to promote ferroptosis based on assessments of lipid reactive oxygen species (ROS) levels, Fe2+ concentrations, mitochondrial ROS levels, and malondialdehyde (MDA) contents; Cell Counting Kit-8 (CCK-8) assays and transmission electron microscopy; and Western blotting analysis of glutathione peroxidase 4 (GPX4), nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase-1 (HO-1), NADPH oxidase 4 (NOX4), and acyl-CoA synthase long-chain family member 4 (ACSL4) protein expression. The protein expression of NRF2, GPX4, HO-1, NOX4, and ACSL4 and the level of MDA in human CHD specimens were also detected. In addition, TBX1 and miR-193a-3p expression was significantly downregulated and TGF-β2 levels were high in human embryonic CHD tissues, as indicated by the H9c2 cell experiments. In summary, the TBX1/miR-193a-3p/TGF-β2 axis mediates CHD by inducing ferroptosis in cardiomyocytes. TGF-β2 may be a target gene for CHD diagnosis and treatment in children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.