Rapid in-field diagnosis is very important to prevent the outbreak of various infectious and contagious diseases. Highly sensitive and quantitative detection of diseases can be performed using fluorescent immunochemical assay with specific antigen-antibody binding and a good quality fluorophore. This can lead to the development of a small, portable, quantitative biosensor to transmit diagnostic results to a control center in order to systematically prevent disease outbreaks. In this study, we developed a novel fluorophore, coumarin-derived dendrimer, with high emission intensity, strong signal brightness, and high photostability. It is easily coupled with biomolecules and emits strong and stable fluorescence at 590 nm with excitation at 455 nm. Application to fluorescent immunochromatographic test (FICT) showed that the novel coumarin-derived dendrimer bioconjugate could detect antigens at amount as low as 0.1 ng. The clinical results and the spectral characteristics of the novel coumarin-derived dendrimer open, for the first time, the possibility of developing a cost/energy efficient LED-based portable quantitative biosensor for point-of-care (POC) disease diagnosis, which can permit real time monitoring (U-healthcare system) by a disease control center.
BackgroundWith the increasing resistance of malaria parasites to available drugs, there is an urgent demand to develop new anti-malarial drugs. Calpain inhibitor, ALLN, is proposed to inhibit parasite proliferation by suppressing haemoglobin degradation. This provides Plasmodium calpain as a potential target for drug development. Pf-calpain, a cysteine protease of Plasmodium falciparum, belongs to calpain-7 family, which is an atypical calpain not harboring Ca2+-binding regulatory motifs. In this present study, in order to establish the screening system for Pf-calpain specific inhibitors, the active form of Pf-calpain was first identified.MethodsRecombinant Pf-calpain including catalytic subdomain IIa (rPfcal-IIa) was heterologously expressed and purified. Enzymatic activity was determined by both fluorogenic substrate assay and gelatin zymography. Molecular homology modeling was carried out to address the activation mode of Pf-calpain in the aspect of structural moiety.ResultsBased on the measurement of enzymatic activity and protease inhibitor assay, it was found that the active form of Pf-calpain only contains the catalytic subdomain IIa, suggesting that Pf-calpain may function as a monomeric form. The sequence prediction indicates that the catalytic subdomain IIa contains all amino acid residues necessary for catalytic triad (Cys-His-Asn) formation. Molecular modeling suggests that the Pf-calpain subdomain IIa makes an active site, holding the catalytic triad residues in their appropriate orientation for catalysis. The mutation analysis further supports that those amino acid residues are functional and have enzymatic activity.ConclusionThe identified active form of Pf-calpain could be utilized to establish high-throughput screening system for Pf-calpain inhibitors. Due to its unique monomeric structural property, Pf-calpain could be served as a novel anti-malarial drug target, which has a high specificity for malaria parasite. In addition, the monomeric form of enzyme may contribute to relatively simple synthesis of selective inhibitors.
Corynebacterium glutamicum is an industrial strain used for the production of valuable chemicals such as L-lysine and L-glutamate. Although C. glutamicum has various industrial applications, a limited number of tunable systems are available to engineer it for efficient production of platform chemicals. Therefore, in this study, we developed a novel tunable promoter system based on repeats of the Vitreoscilla hemoglobin promoter (Pvgb). Tunable expression of green fluorescent protein (GFP) was investigated under one, four, and eight repeats of Pvgb (Pvgb, Pvgb4, and Pvgb8). The intensity of fluorescence in recombinant C. glutamicum strains increased as the number of Pvgb increased from single to eight (Pvgb8) repeats. Furthermore, we demonstrated the application of the new Pvgb promoter-based vector system as a platform for metabolic engineering of C. glutamicum by investigating 5-aminovaleric acid (5-AVA) and gamma-aminobutyric acid (GABA) production in several C. glutamicum strains. The profile of 5-AVA and GABA production by the recombinant strains were evaluated to investigate the tunable expression of key enzymes such as DavBA and GadBmut. We observed that 5-AVA and GABA production by the recombinant strains increased as the number of Pvgb used for the expression of key proteins increased. The recombinant C. glutamicum strain expressing DavBA could produce higher amounts of 5-AVA under the control of Pvgb8 (3.69 ± 0.07 g/L) than the one under the control of Pvgb (3.43 ± 0.10 g/L). The average gamma-aminobutyric acid production also increased in all the tested strains as the number of Pvgb used for GadBmut expression increased from single (4.81–5.31 g/L) to eight repeats (4.94–5.58 g/L).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.