In the present study we investigated the role of 5-hydroxytryptamine (5-HT) and 5-HT1A receptor during liver regeneration after partial hepatectomy (PH) and N-nitrosodiethylamine (NDEA) induced hepatocellular carcinoma in male Wistar rats. 5-HT content was significantly increased during liver regeneration after PH and NDEA induced hepatocellular carcinoma. Scatchard analysis using 8-OH-DPAT, a 5-HT1A specific agonist showed a decreased receptor during liver regeneration after PH and NDEA induced hepatocellular carcinoma. 5-HT when added alone to primary hepatocyte culture did not increase DNA synthesis but was able to increase the EGF mediated DNA synthesis and inhibit the TGF beta 1 mediated DNA synthesis suppression in vitro. This confirmed the co-mitogenic activity of 5-HT. 8-OH-DPAT at a concentration of 10(-4) M inhibited the basal and EGF-mediated DNA synthesis in primary hepatocyte cultures. It also suppressed the TGF beta 1-mediated DNA synthesis suppression. This clearly showed that activated 5-HT1A receptor inhibited hepatocyte DNA synthesis. Our results suggest that decreased hepatic 5-HT1A receptor function during hepatocyte regeneration and neoplasia has clinical significance in the control of cell proliferation.
In the present study, serotonin 2C (5-HT(2C)) receptor binding parameters in the brainstem and cerebral cortex were investigated during liver generation after partial hepatectomy (PH) and N-nitrosodiethylamine (NDEA) induced hepatic neoplasia in male Wistar rats. The serotonin content increased significantly (p<0.01) in the cerebral cortex after PH and in NDEA induced hepatic neoplasia. Brain stem serotonin content increased significantly (p<0.05) after PH and (p<0.001) in NDEA induced hepatic neoplasia. The number and affinity of the 5-HT(2C) receptors in the crude synaptic membrane preparations of the brain stem showed a significant (p<0.001) increase after PH and in NDEA induced hepatic neoplasia. The number and affinity of 5-HT(2C) receptors increased significantly (p<0.001) in NDEA induced hepatic neoplasia in the crude synaptic membrane preparations of the cerebral cortex. There was a significant (p<0.01) increase in plasma norepinephrine in PH and (p<0.001) in NDEA induced hepatic neoplasia, indicating sympathetic stimulation. Thus, our results suggest that during active hepatocyte proliferation 5-HT(2C) receptor in the brain stem and cerebral cortex are up-regulated which in turn induce hepatocyte proliferation mediated through sympathetic stimulation.
We investigated acetylcholine esterase (AChE) activity, acetylcholine and muscarinic M1, M3 receptors kinetics in the cerebral cortex of young and old streptozotocin induced and insulin treated diabetic rats. The role of muscarinic receptors in intracellular calcium release from pancreatic islets was studied in vitro. Wistar rats of 7 and 90-weeks old were used. All studies were done in cerebral cortex. AChE assay was done by spectrophotometric method. Radioreceptor binding assays were done for Acetylcholine, Muscarinic M1 and M3 receptors using specific ligands. Calcium imaging was done using fluo4-AM in pancreatic cells. Ninety-weeks old control rats showed significantly decreased Vmax and increased Km for AChE compared to 7-weeks old control rats. An increased Vmax observed in both 7 and 90-weeks old diabetic groups with significant decrease in Km. Scatchard analysis using specific agonists showed significant decrease in the B (max) and K (d) of acetylcholine and muscarinic M1 receptors in 90-weeks old control rats compared to 7-weeks old control. Binding studies for M3 receptors showed no significant change compared to 7-weeks old control. Acetylcholine, muscarinic M1 and M3 receptor number significantly increased in 90-weeks old diabetic rat groups compared to their respective controls. Insulin treatment significantly reversed the binding parameters to near control compared to diabetic group. In vitro studies showed that acetylcholine through muscarinic M1 and M3 receptors' stimulated calcium release from the pancreatic islets. Thus our studies suggest that Insulin signaling play an important part in differentially regulating pancreatic cholinergic activity, and the diabetes mediated cortical dysfunctions with age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.