Patient-specific induced pluripotent stem cells (iPSCs) represent a novel system for modeling human genetic disease and could develop into a key drug discovery platform. We recently reported disease-specific phenotypes in iPSCs from familial dysautonomia (FD) patients. FD is a rare but fatal genetic disorder affecting neural crest lineages. Here we demonstrate the feasibility of performing a primary screen in FD-iPSC derived neural crest precursors. Out of 6,912 compounds tested we characterized 8 hits that rescue expression of IKBKAP, the gene responsible for FD. One of those hits, SKF-86466, is shown to induce IKBKAP transcription via modulation of intracellular cAMP levels and PKA dependent CREB phosphorylation. SKF-86466 also rescues IKAP protein expression and the disease-specific loss of autonomic neuron marker expression. Our data implicate alpha-2 adrenergic receptor activity in regulating IKBKAP expression and demonstrate that small molecule discovery in an iPSC-based disease model can identify candidate drugs for potential therapeutic intervention.
Patient-specific human induced pluripotent stem cells (hiPSCs) hold great promise for the modelling of genetic disorders. However, these cells display wide intra-individual and inter-individual variations in gene expression, making it challenging to distinguish true-positive and false-positive phenotypes. Also, data from hiPSC phenotypes and from human embryonic stem cells (hESCs) harbouring the same disease mutation are lacking. Here, we report a comparison of molecular, cellular and functional characteristics of three congruent patient-specific cell types ― hiPSCs, hESCs, and direct lineage-converted cells ― derived from currently available differentiation and direct-reprogramming technologies, for the modelling of Charcot Marie Tooth 1A, a human genetic Schwann-cell disorder featuring a 1.4 megabase chromosomal duplication. In particular, we find that the chemokines CXCL1 and MCP1 are commonly upregulated in all three congruent models and in clinical patient samples. The development of congruent models of a single genetic disease by using somatic cells from a common patient will facilitate the search for convergent phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.