Members of the genus Juglans are monecious wind-pollinated trees in the family Juglandaceae with highly heterozygous genomes, which greatly complicates genome sequence assembly. The genomes of interspecific hybrids are usually comprised of haploid genomes of parental species. We exploited this attribute of interspecific hybrids to avoid heterozygosity and sequenced an interspecific hybrid Juglans microcarpa × J. regia using a novel combination of single-molecule sequencing and optical genome mapping technologies. The resulting assemblies of both genomes were remarkably complete including chromosome termini and centromere regions. Chromosome termini consisted of arrays of telomeric repeats about 8 kb long and heterochromatic subtelomeric regions about 10 kb long. The centromeres consisted of arrays of a centromere-specific Gypsy retrotransposon and most contained genes, many of them transcribed. Juglans genomes evolved by a whole-genome-duplication dating back to the Cretaceous-Paleogene boundary and consist of two subgenomes, which were fractionated by numerous short gene deletions evenly distributed along the length of the chromosomes. Fractionation was shown to be asymmetric with one subgenome exhibiting greater gene loss than the other. The asymmetry of the process is ongoing and mirrors an asymmetry in gene expression between the subgenomes. Given the importance of J. microcarpa × J. regia hybrids as potential walnut rootstocks, we catalogued disease resistance genes in the parental genomes and studied their chromosomal distribution. We also estimated the molecular clock rates for woody perennials and deployed them in estimating divergence times of Juglans genomes and those of other woody perennials.
RNA-Seq analysis is a strong tool to gain insight into the molecular responses to biotic stresses in plants. The objective of this work is to identify specific and common molecular responses between different transcriptomic data related to fungi, virus and bacteria attacks in Malus x domestica. We analyzed seven transcriptomic datasets in Malus x domestica divided in responses to fungal pathogens, virus (Apple Stem Grooving Virus) and bacteria (Erwinia amylovora). Data were dissected using an integrated approach of pathway- and gene- set enrichment analysis, Mapman visualization tool, gene ontology analysis and inferred protein-protein interaction network. Our meta-analysis revealed that the bacterial infection enhanced specifically genes involved in sugar alcohol metabolism. Brassinosteroids were upregulated by fungal pathogens while ethylene was highly affected by Erwinia amylovora. Gibberellins and jasmonates were strongly repressed by fungal and viral infections. The protein-protein interaction network highlighted the role of WRKYs in responses to the studied pathogens. In summary, our meta-analysis provides a better understanding of the Malus X domestica transcriptome responses to different biotic stress conditions; we anticipate that these insights will assist in the development of genetic resistance and acute therapeutic strategies. This work would be an example for next meta-analysis works aiming at identifying specific common molecular features linked with biotic stress responses in other specialty crops.
A bioinformatic analysis of previously published RNA-Seq studies on Huanglongbing (HLB) response and tolerance in leaf tissues was performed. The aim was to identify genes commonly modulated between studies and genes, pathways and gene set categories strongly associated with this devastating Citrus disease. Bioinformatic analysis of expression data of four datasets present in NCBI provided 46–68 million reads with an alignment percentage of 72.95–86.76%. Only 16 HLB-regulated genes were commonly identified between the three leaf datasets. Among them were key genes encoding proteins involved in cell wall modification such as CESA8, pectinesterase, expansin8, expansin beta 3.1, and a pectate lyase. Fourteen HLB-regulated genes were in common between all four datasets. Gene set enrichment analysis showed some different gene categories affected by HLB disease. Although sucrose and starch metabolism was highly linked with disease symptoms, different genes were significantly regulated depending on leaf growth and infection stages and experimental conditions. Histone-related transcription factors were highly affected by HLB in the analyzed RNA-Seq datasets. HLB tolerance was linked with induction of proteins involved in detoxification. Protein–protein interaction (PPI) network analysis confirmed a possible role for heat shock proteins in curbing disease progression.
BackgroundThe oral cavities of snakes are replete with various types of bacterial flora. Culture-dependent studies suggest that some of the bacterial species are responsible for secondary bacterial infection associated with snakebite. A complete profile of the ophidian oral bacterial community has been unreported until now. Therefore, in the present study, we determined the complete bacterial compositions in the oral cavity of some snakes from India.MethodsTotal DNA was isolated from oral swabs collected from three wild snake species (Indian Cobra, King Cobra and Indian Python). Next, the DNA was subjected to PCR amplification of microbial 16S rRNA gene using V3-region-specific primers. The amplicons were used for preparation of DNA libraries that were sequenced on an Illumina MiSeq platform.ResultsThe cluster-based taxonomy analysis revealed that Proteobacteria and Actinobacteria were the most predominant phyla present in the oral cavities of snakes. This result indicates that snakes show more similarities to birds than mammals as to their oral bacterial communities. Furthermore, our study reports all the unique and common bacterial species (total: 147) found among the oral microbes of snakes studied, while the majority of commonly abundant species were pathogens or opportunistic pathogens to humans. A wide difference in ophidian oral bacterial flora suggests variation by individual, species and geographical region.ConclusionThe present study would provide a foundation for further research on snakes to recognize the potential drugs/antibiotics for the different infectious diseases.Electronic supplementary materialThe online version of this article (10.1186/s40409-018-0181-8) contains supplementary material, which is available to authorized users.
The alteration of heavy (“ON/bearing”) and light (“OFF/non-bearing”) yield in pistachio (Pistacia vera L.) has been reported to result from the abscission of inflorescence buds on high yielding trees during the summer, but the regulatory mechanisms involved in this bud abscission remain unclear. The analysis provides insights into the transcript changes between inflorescence buds on bearing and non-bearing shoots, that we indicated as “ON” and “OFF”, and shed light on the molecular mechanisms causing premature inflorescence bud abscission in the pistachio cultivar “Bianca” which can be related to the alternate bearing behavior. In this study, a transcriptome analysis was performed in inflorescence buds of “ON” and “OFF” shoots. A total of 14,330 differentially expressed genes (DEGs), most of which are involved in sugar metabolism, plant hormone pathways, secondary metabolism and oxidative stress pathway, were identified. Our results shed light on the molecular mechanisms underlying inflorescence bud abscission in pistachio and we proposed a hypothetical model behind the molecular mechanism causing this abscission in “ON” shoots. Results highlighted how changes in genes expressed in nutrient pathways (carbohydrates and mineral elements) in pistachio “ON” vs. “OFF” inflorescence buds triggers a cascade of events involving trehalose-6-phosphate and target of rapamycin (TOR) signaling, SnRK1 complex, hormones, polyamines and ROS which end, through programmed cell death and autophagy phenomena, with the abscission of inflorescence buds. This is the first study reporting gene expression profiling of the fate of “ON” and “OFF” inflorescence buds associated with the alternate bearing in the pistachio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.