Graphene quantum dots (GQDs), which are edge-bound nanometer-size graphene pieces, have fascinating optical and electronic properties. These have been synthesized either by nanolithography or from starting materials such as graphene oxide (GO) by the chemical breakdown of their extended planar structure, both of which are multistep tedious processes. Here, we report that during the acid treatment and chemical exfoliation of traditional pitch-based carbon fibers, that are both cheap and commercially available, the stacked graphitic submicrometer domains of the fibers are easily broken down, leading to the creation of GQDs with different size distribution in scalable amounts. The as-produced GQDs, in the size range of 1-4 nm, show two-dimensional morphology, most of which present zigzag edge structure, and are 1-3 atomic layers thick. The photoluminescence of the GQDs can be tailored through varying the size of the GQDs by changing process parameters. Due to the luminescence stability, nanosecond lifetime, biocompatibility, low toxicity, and high water solubility, these GQDs are demonstrated to be excellent probes for high contrast bioimaging and biosensing applications.
Strong in-plane bonding and weak van der Waals interplanar interactions characterize a large number of layered materials, as epitomized by graphite. The advent of graphene (G), individual layers from graphite, and atomic layers isolated from a few other van der Waals bonded layered compounds has enabled the ability to pick, place, and stack atomic layers of arbitrary compositions and build unique layered materials, which would be otherwise impossible to synthesize via other known techniques. Here we demonstrate this concept for solids consisting of randomly stacked layers of graphene and hexagonal boron nitride (h-BN). Dispersions of exfoliated h-BN layers and graphene have been prepared by liquid phase exfoliation methods and mixed, in various concentrations, to create artificially stacked h-BN/G solids. These van der Waals stacked hybrid solid materials show interesting electrical, mechanical, and optical properties distinctly different from their starting parent layers. From extensive first principle calculations we identify (i) a novel approach to control the dipole at the h-BN/G interface by properly sandwiching or sliding layers of h-BN and graphene, and (ii) a way to inject carriers in graphene upon UV excitations of the Frenkell-like excitons of the h-BN layer(s). Our combined approach could be used to create artificial materials, made predominantly from inter planar van der Waals stacking of robust bond saturated atomic layers of different solids with vastly different properties.
Counterfeiting of valuable documents, currency and branded products is a challenging problem that has serious economic, security and health ramifications for governments, businesses and consumers all over the world. It is estimated that counterfeiting represents a multi-billion dollar underground economy with counterfeit products being produced on a large scale every year. Counterfeiting is an increasingly high-tech crime and calls for high-tech solutions to prevent and deter the acts of counterfeiting. The present review briefly outlines and addresses the key challenges in this area, including the above mentioned concerns for anti-counterfeiting applications. This article describes a unique combination of all possible kinds of security ink formulations based on lanthanide doped luminescent nanomaterials, quantum dots (semiconductor and carbon based), metal organic frameworks as well as plasmonic nanomaterials for their possible use in anti-counterfeiting applications. Moreover, in this review, we have briefly discussed and described the historical background of luminescent nanomaterials, basic concepts and detailed synthesis methods along with their characterization. Furthermore, we have also discussed the methods adopted for the fabrication and design of luminescent security inks, various security printing techniques and their anti-counterfeiting applications.
High performance γ-Fe2O3 decorated rGO–polyaniline core–shell tubes demonstrated exceptional EMI shielding which could be an ultimate choice for future building block material in EMI SE applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.