We have carried out ab-initio calculation and study of structural and electronic properties of AgAlM 2 (M = S, Se, Te) chalcopyrite semiconductors using Density Functional Theory (DFT) based self consistent Tight binding Linear Muffin Tin orbital (TB-LMTO) method. Calculated equlibrium values of lattice constants, anion displacement parameter (u), tetragonal distortion (η = c/2a) and bond lengths have good agreement with experimental values. Our study suggests these semiconductors to be direct band gap semiconductors with band gaps 1.98 eV, 1.59 eV and 1.36 eV respectively. These are in good agreement with experimental value within the limitation of local density approximation (LDA). Our explicit study of the effects of anion displacement and p-d hybridization show that band gap increases by 9.8%, 8.2% and 5.1% respectively for AgAlM 2 (M = S, Se, Te) due to former effect and decreases by 51%, 47% and 42% respectively due to later effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.