A numerical study has been carried out on the two-dimensional flow past a circular cylinder. In this case, a splitter plate is provided at the rear stagnation point in the downstream direction. ansys fluent has been used to carry out the numerical simulations based on finite volume method approach. Grid independence was achieved and the numerical model was validated with results available in open literature at Reynolds numbers of 100, 5000, and 100,000 respectively. In the present investigation, the characteristics of vortex shedding due to the presence of splitter plate in the circular cylinder were investigated. The main focus of this research was to find the optimal splitter plate length for low, moderate, and high Reynolds numbers. It was observed that at low, moderate, and high Reynolds numbers, the drag coefficient (cd) for optimal plate length decreased drastically as compared to the baseline circular cylinder case. Moreover, the fluctuating nature of lift coefficient (cl) had also ceased. This research work has a good potential to decrease time-varying structural loads on bluff bodies by decreasing the vortex shedding frequency and consequently decreasing drag. The scope of our research extends to structures of bridges and large vehicles, radiator pipes of heat exchangers, landing gears of aircraft, and many more.
The characteristics of flow over a square cylinder in the vicinity of a plane stationary wall have been numerically investigated. 2D time-dependent incompressible flow at low-Reynolds numbers of 100 and 200 has been calculated using the finite volume method. CFRUNS scheme is used for pressure-velocity coupling in numerical calculation. The authors have tried to make an attempt to analyze the features of the complex flow field through flow streamlines and the vorticity contours. The impact of the gap between the cylinder and the plane wall upon flow pattern behavior is also studied. An intense interaction between vorticity in the boundary layer generated over the plane wall and the vorticity associated with the shear layer emanating from the separation points on the cylinder surface has been observed producing a very complex flow field in the cylinder wake and the gap between the cylinder and the wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.