S U M M A R YIn this paper, we investigate the crustal and uppermost mantle structure beneath Toba caldera, which is known as the location of one of the largest Cenozoic eruptions on Earth. The most recent event occurred 74 000 yr BP, and had a significant global impact on climate and the biosphere. In this study, we revise data on local seismicity in the Toba area recorded by a temporary PASSCAL network in 1995. We applied the newest version of the LOTOS-07 algorithm, which includes absolute source location, optimization of the starting 1-D velocity model, and iterative tomographic inversion for 3-D seismic P, S (or the V P /V S ratio) and source parameters. Special attention is paid to verification of the obtained results. Beneath the Toba caldera and other volcanoes of the arc, we observe relatively moderate (for volcanic areas) negative P-and S-velocity anomalies that reach 18 per cent in the uppermost layer, 10-12 per cent in the lower crust and about 7 per cent in the uppermost mantle. Much stronger contrasts are observed for the V P /V S ratio that is a possible indicator of dominant effect of melting in origin of seismic anomalies. At a depth of 5 km beneath active volcanoes, we observe small patterns (7-15 km size) with a high V P /V S ratio that might be an image of actual magmatic chambers filled with partially molten material feeding the volcanoes. In the mantle wedge, we observe a vertical anomaly with low P and S velocities and a high V P /V S ratio that link the cluster of events at 120-140 km depth with Toba caldera. This may be an image of ascending fluids and melts released from the subducted slab due to phase transitions. However, taking into account poor vertical resolution, these results should be interpreted with prudence. Although the results show clear signatures that are quite typical for volcanic areas (low velocity and high V P /V S ratio beneath volcanoes), we do not observe any specific features in seismic structure that could characterize Toba as a super volcano.
[1] In this study we present the new tomographic code ANITA which provides 3-D anisotropic P and isotropic S velocity distribution based on P and S traveltimes from local seismicity. For the P anisotropic model, we determine four parameters for each parameterization cell. This represents an orthorhombic anisotropy with one predefined direction oriented vertically. Three of the parameters describe slowness variations along three horizontal orientations with azimuths of 0°, 60°, and 120°, and one is a perturbation along the vertical axis. The nonlinear iterative inversion procedure is similar to that used in the LOTOS code. We have implemented this algorithm for the updated data set of central Java, part of which was previously used for the isotropic inversion. It was obtained that the crustal and uppermost mantle velocity structure beneath central Java is strongly anisotropic with 7-10% of maximal difference between slow and fast velocity in different directions. In the forearc (area between southern coast and volcanoes), the structure of both isotropic and anisotropic structure is strongly heterogeneous. Variety of anisotropy orientations and highly contrasted velocity patterns can be explained by a complex block structure of the crust. Beneath volcanoes we observe faster velocities in vertical direction, which is probably an indicator for vertically oriented structures (channels, dykes). In the crust beneath the middle part of central Java, north to Merapi and Lawu volcanoes, we observe a large and very intense anomaly with a velocity decrease of up to 30% and 35% for P and S models, respectively. Inside this anomaly E-W orientation of fast velocity takes place, probably caused by regional extension stress regime. In a vertical section we observe faster horizontal velocities inside this anomaly that might be explained by layering of sediments and/or penetration of quasi-horizontal lenses with molten magma. In the mantle, trench parallel anisotropy is observed throughout the study area. Such anisotropy in the slab entrained corner flow may be due to presence of B-type olivine having predominant axis parallel to the shear direction, which appears in conditions of high water or/and melting content.
Indonesia is repeatedly unsettled by severe volcano‐ and earthquake‐related disasters, which are geologically coupled to the 5–7 cm/a tectonic convergence of the Australian plate beneath the Sunda Plate. On Saturday, 26 May 2006, the southern coast of central Java was struck by an earthquake at 2254 UTC in the Sultanate Yogyakarta. Although the magnitude reached only Mw = 6.4, it left more than 6,000 fatalities and up to 1,000,000 homeless. The main disaster area was south of Mt. Merapi Volcano, located within a narrow topographic and structural depression along the Opak River. The earthquake disaster area within the depression is underlain by thick volcaniclastic deposits commonly derived in the form of lahars from Mt. Merapi Volcano, which had a major influence leading to the disaster. In order to more precisely understand this earthquake and its consequences, a 3‐month aftershock measurement campaign was performed from May to August 2006. We here present the first location results, which suggest that the Yogyakarta earthquake occurred at 10–20 km distance east of the disaster area, outside of the topographic depression. Using simple model calculations taking material heterogeneity into account we illustrate how soft volcaniclastic deposits may locally amplify ground shaking at distance. As the high degree of observed damage may have been augmented by the seismic response of the volcaniclastic Mt. Merapi deposits, this work implies that the volcano had an indirect effect on the level of earthquake destruction.
SUMMARY Seismic and volcanic activities in Central Java, Indonesia, the area of interest of this study, are directly or indirectly related to the subduction of the Indo‐Australian plate. In the framework of the MERapi AMphibious EXperiments (MERAMEX), a network consisting of about 130 seismographic stations was installed onshore and offshore in Central Java and operated for more than 150 days. In addition, 3‐D active seismic experiments were carried out offshore. In this paper, we present the results of processing combined active and passive seismic data, which contain traveltimes from 292 local earthquakes and additional airgun shots along three offshore profiles. The inversion was performed using the updated LOTOS‐06 code that allows processing for active and passive source data. The joint inversion of the active and passive data set considerably improves the resolution of the upper crust, especially in the offshore area in comparison to only passive data. The inversion results are verified using a series of synthetic tests. The resulting images show an exceptionally strong low‐velocity anomaly (−30 per cent) in the backarc crust northward of the active volcanoes. In the upper mantle beneath the volcanoes, we observe a low‐velocity anomaly inclined towards the slab, which probably reflects the paths of fluids and partially melted materials in the mantle wedge. The crust in the forearc appears to be strongly heterogeneous. The onshore part consists of two high‐velocity blocks separated by a narrow low‐velocity anomaly, which can be interpreted as a weakened contact zone between two rigid crustal bodies. The recent Java Mw= 6.3 earthquake (2006/05/26‐UTC) occurred at the lower edge of this zone. Its focal strike slip mechanism is consistent with the orientation of this contact.
The occurrence and the style of volcanic eruptions are largely controlled by the ways in which magma is stored and transported from the mantle to the surface through the crust. Nevertheless, our understanding of the deep roots of volcano-magmatic systems remains very limited. Here, we use the sources of seismovolcanic tremor to delineate the active part of the magmatic system beneath the Klyuchevskoy Volcanic Group in Kamchatka, Russia. The tremor sources are distributed in a wide spatial region over the whole range of crustal depths connecting different volcanoes of the group. The tremor activity is characterized by rapid vertical and lateral migrations explained by fast pressure transients and dynamic permeability. Our results support the conceptual model of extended and highly dynamic trans-crustal magmatic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.